Log in

Explicit Stability for a Porous Thermoelastic System with Second Sound and Distributed Delay Term

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In the present article, we consider a porous thermoelastic system with distributed delay term in second sound, by using the energy method combined with multiplicative technique, we show the polynomial decay estimate of (1) with (3) in Theorem 2.7 and exponential stability of (1) with conditions (38) in Theorem 3.4. A new restriction on delay term depending on the time in (4) is used to show that the solution energy should be stable. The importance of the present research lies with describing the role of Dirichlet conditions in the nature of stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apalara, T.A.: Well-posedness and exponential stability for a linear damped timoshenko system with second sound and internal distributed delay. Electron. J. Differ. Eqn. 2014(254), 1–15 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Borges Filho, E., Santos, M.L.: On porous-elastic system with a time-varying delay term in the internal feedbacks. Z. Angew. Math. Mech. 100(8), 1–22 (2020)

    Article  MathSciNet  Google Scholar 

  3. Casas, P.S., Quintanilla, R.: Exponential decay in one-dimensional porous-thermoelasticity. Mech. Res. Commun. 32(6), 652–658 (2005)

    Article  Google Scholar 

  4. Campelo, A.D.S., Santos, M.L., AlmeidaJunior, D.S.: On the decay rates of porous elastic systems. J. Elast. 127, 79–101 (2017)

    Article  MathSciNet  Google Scholar 

  5. Draifia, A., Boulaaras, S., Zennir, Kh.: General decay of nonlinear viscoelastic kirchhoff equation with balakrishnan-taylor dam** and logarithmic nonlinearity. Math. Meth. Appl. Sci. 42(14), 4795–4814 (2019)

    Article  MathSciNet  Google Scholar 

  6. Hansen, S.W.: Exponential energy decay in a linear thermoelastic rod. J. Math. Anal. Appl. 167, 429–442 (1992)

    Article  MathSciNet  Google Scholar 

  7. Magana, A., Quintanilla, R.: On the time decay of solutions in one-dimensional theories of porous materials. Int. J. Solids Struct. 43(11–12), 3414–3427 (2006)

    Article  MathSciNet  Google Scholar 

  8. Nicaise, A.S., Pignotti, C.: Stabilization of the wave equation with boundary or internal distributed delay. Differ. Int. Equ. 21(9–10), 935–958 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Ouchenane, D.: A stability result of a timoshenko system in thermoelasticity of second sound with a delay term in the internal feedback. Georgian Math. J. 21(4), 475–489 (2014)

    Article  MathSciNet  Google Scholar 

  10. Racke, R.: Thermoelasticity with second sound, exponential stability in linear and non linear 1-d. Math. Meth. Appl. Sci. 25, 409–441 (2002)

    Article  MathSciNet  Google Scholar 

  11. Racke, R., Fernandez-Sare, H.D.: On the stability of damped timoshenko system cattaneo versus fourier law. Arch. Rat. Mech. Anal. 194, 221–251 (2009)

    Article  MathSciNet  Google Scholar 

  12. Racke, R., Munoz Rivera, J.E.: Mildly dissipative nonlinear timoshenko systems-global existence and exponential stability. J. Math. Anal. Appl. 276, 248–278 (2002)

    Article  MathSciNet  Google Scholar 

  13. Renardy, Y., Kim, J.U.: Boundary control of the timoshenko beam. SIAM J. Control Optim. 25(6), 1417–1429 (1987)

    Article  MathSciNet  Google Scholar 

  14. Rivera, J.E.M., Pamplona, P.X., Quintanilla, R.: Stabilization in elastic solids with voids. J. Math. Anal. Appl. 350(1), 37–49 (2009)

    Article  MathSciNet  Google Scholar 

  15. Rivera, J.E.M., Pamplona, P.X., Quintanilla, R.: On the decay of solutions for porous-elastic system with history. J. Math. Anal. Appl. 379(2), 682–705 (2011)

    Article  MathSciNet  Google Scholar 

  16. Rivera, J.E.M., Santos, M.L., AlmeidaJunior, D.S.: The stability number of the timoshenko system with second sound. J. Differ. Eqn. 253, 715–2733 (2012)

    MathSciNet  Google Scholar 

  17. Soufyane, A.: Energy decay for porous-thermo-elasticity systems of memory type. Appl. Anal. 87(4), 451–464 (2008)

    Article  MathSciNet  Google Scholar 

  18. Tarabek, M.A.: On the existence of smooth solutions in one-dimensional nonlinear thermoelasticity with second sound. Q. Appl. Math. 50, 727–742 (1992)

    Article  MathSciNet  Google Scholar 

  19. Timoshenko, S.: On the correction for shear of the differential equation for transverse vibrations of prismaticbars. Philos. Mag. 41, 744–746 (1921)

    Article  Google Scholar 

  20. Zheng, S., Liu, Z.: Semigroups Associated with Dissipaive Systems, p. 224. Chapman Hall/CRC, Boca Raton (1999)

    Google Scholar 

  21. Zennir, Kh.: Stabilization for solutions of plate equation with time-varying delay and weak-viscoelasticity in \({\mathbf{R}}^n\). Russ. Math. 64(9), 21–33 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Zennir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djebabla, A., Choucha, A., Ouchenane, D. et al. Explicit Stability for a Porous Thermoelastic System with Second Sound and Distributed Delay Term. Int. J. Appl. Comput. Math 7, 50 (2021). https://doi.org/10.1007/s40819-021-00997-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-00997-5

Keywords

Mathematics Subject Classification

Navigation