Log in

Thrust force model for ultrasonic-assisted micro drilling of DD6 superalloy

  • Published:
Advances in Manufacturing Aims and scope Submit manuscript

Abstract

As a typical refractory material, the DD6 nickel-based single-crystal superalloy has important applications in the aviation industry. Ultrasonic-assisted drilling is an advanced machining method that significantly improves machining of refractory materials. The drilling thrust force influences the hole surface quality, burr height, and bit wear. Therefore, it is necessary to predict the thrust force during ultrasonic-assisted drilling. However, there are few reports on the modeling of the thrust force in the ultrasonic-assisted drilling of micro-holes. A thrust force prediction model for ultrasonic-assisted micro-drilling is proposed in this study. Based on the basic cutting principle, the dynamic cutting speed, dynamic cutting thickness, and acoustic softening effect caused by ultrasonic vibrations are factored into this model. Through model calibration, the specific friction force and specific normal force coefficients were determined. The model was verified through ultrasonic-assisted drilling experiments conducted at different feed rates, spindle speeds, frequencies, and amplitudes. The maximum and minimum errors of the average thrust force were 10.5% and 2.3%, respectively. This model accurately predicts the thrust force based on the parameters used for ultrasonic-assisted micro-hole drilling and can assist in the analysis and modeling of DD6 superalloy processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

f z :

Feed per revolution (mm/r)

N :

Spindle speed (r/s)

t :

Time (s)

f :

Vibration frequency (Hz)

A :

Amplitude (μm)

t a :

Axial uncut chip thickness (mm)

t i :

Instantaneous uncut chip thickness (mm)

ϕ :

Half point angle (°)

h :

Helix angle (°)

F n :

Normal force (N)

F f :

Friction force (N)

A c :

Uncut chip area (mm2)

K n :

Specific normal force (N/mm2)

K f :

Specific friction force (N/mm2)

v c :

Cutting speed (mm/s)

2w :

Web thickness (mm)

α n :

Normal rake angle (°)

i :

Inclination angle (°)

l chi :

Length of the chisel edge (mm)

F zCD :

Thrust force measured in conventional drilling (N)

η c :

Chip flow angle (°)

φ :

Chisel edge angle (°)

dF mcut :

Elemental cutting force in main cutting edge (N)

dF mthu :

Elemental oblique cutting thrust force in main cutting edge (N)

dF mlat :

Elemental lateral force in main cutting edge (N)

dF ccut :

Elemental cutting force in chisel edge (N)

dF cthu :

Elemental thrust force in chisel edge (N)

ω :

Circular frequency (rad/s)

s :

Wave velocity

E :

Young's modulus

F r c cin :

Reduction in indentation force (N)

k :

Acoustic softening coefficient of material

F ccin :

Indentation force in conventional drilling (N)

F zTotal :

Total thrust force in ultrasonic-assisted drilling (N)

F cin :

Indentation force in ultrasonic-assisted drilling (N)

F(t):

Instantaneous feed rate (mm/s)

l chi :

Length of the chisel edge (mm)

F zUAD :

Thrust force measured in ultrasonic assisted drilling (N)

References

  1. Gu YL, Li HN, Du BC et al (2019) Towards the understanding of creep-feed deep grinding of DD6 nickel-based single-crystal superalloy. Int J Adv Manuf Technol 100(1/4):445–455

    Article  Google Scholar 

  2. Liu DS, Zhang DX, Liang JW et al (2014) Prediction of creep rupture life of a V-notched bar in DD6 Ni-based single crystal superalloy. Mater Sci Eng A 615:14–21

    Article  Google Scholar 

  3. Fang YW, Li YH (2013) Dynamic responses of Nickel-based single crystal superalloy DD6 Blade. J Mater Eng Perform 22(6):1565–1573

    Article  Google Scholar 

  4. ** HP, Li JR, Liu SZ (2007) Stress rupture properties of the second generation single crystal superalloy DD6 after high temperature exposure. Mater Sci Forum 546/549:1249–1252

  5. Azim S, Gangopadhyay S, Mahapatra SS et al (2019) Study of cutting forces and surface integrity in micro drilling of a Ni-based superalloy. J Manuf Process 45:368–378

    Article  Google Scholar 

  6. Zhou YG, Li HY, Ma LJ et al (2020) Study on hole quality and surface quality of micro-drilling nickel-based single-crystal superalloy. J Braz Soc Mech Sci Eng 42(6):341. https://doi.org/10.1007/s40430-020-02427-x

    Article  Google Scholar 

  7. Makhdum F, Phadnis VA, Roy A et al (2014) Effect of ultrasonically-assisted drilling on carbon-fibre-reinforced plastics. J Sound Vib 333(23):5939–5952

    Article  Google Scholar 

  8. Makhdum F, Norddin DNP, Roy A et al (2012) Ultrasonically assisted drilling of carbon fibre reinforced plastics. Solid State Phenom 188:170–175

    Article  Google Scholar 

  9. Sanda A, Arriola I, Garcia NV et al (2016) Ultrasonically assisted drilling of carbon fibre reinforced plastics and Ti6Al4V. J Manuf Process 22:169–176

    Article  Google Scholar 

  10. Sambhav K, Tandon P, Kapoor SG et al (2013) Mathematical modeling of cutting forces in microdrilling. J Manuf Sci Eng 135(1):014501. https://doi.org/10.1115/1.4007955

    Article  Google Scholar 

  11. Rahamathullah I, Shunmugam MS (2014) Mechanistic approach for prediction of forces in micro-drilling of plain and glass-reinforced epoxy sheets. Int J Adv Manuf Technol 75(5/8):1177–1187

    Article  Google Scholar 

  12. Mittal RK, Yadav S, Singh RK (2017) Mechanistic force and burr modeling in high-speed microdrilling of Ti6Al4V. Procedia CIRP 58:329–334

    Article  Google Scholar 

  13. Dargnat F, Darnis P, Cahuc O (2008) Energetical approach for semi-analytical drilling modelling. Mach Sci Technol 12(3):295–324

    Article  Google Scholar 

  14. Paul A, Kapoor SG, De Vor RE (2005) A chisel edge model for arbitrary drill point geometry. J Manuf Sci Eng 127(1):23–32

    Article  Google Scholar 

  15. Pirtini M, Lazoglu I (2005) Forces and hole quality in drilling. Int J Mach Tools Manuf 45(11):1271–1281

    Article  Google Scholar 

  16. Gong YP, Lin C, Ehmann KF (2005) Dynamics of initial penetration in drilling: part 1—mechanistic model for dynamic forces. J Manuf Sci Eng 127(2):280–288

    Article  Google Scholar 

  17. Wu J, Wen JM, Wang ZY (2016) Study on the predicted model and experiment of drilling forces in drilling Ti6Al4V. J Braz Soc Mech Sci Eng 38(2):465–472

    Article  Google Scholar 

  18. Gao GF, Yuan ZJ, **a ZW et al (2021) Study on thrust force of ultrasonic-assisted vibration micro-hole drilling of titanium alloy. Int J Adv Manuf Technol 112(11/12):3399–3413

    Article  Google Scholar 

  19. Feng Y, Zhang M, Zhu ZH et al (2019) Axial cutting force prediction model of titanium matrix composites TiBw/TC4 in ultrasonic vibration-assisted drilling. Int J Adv Manuf Technol 105(1/4):121–135

    Article  Google Scholar 

  20. Wang LP, Wang LJ, He YH et al (1998) Prediction and computer simulation of dynamic thrust and torque in vibration drilling. Proc Inst Mech Eng Part B J Eng Manuf 212(6):489–497

    Article  Google Scholar 

  21. Zhang LB, Wang LJ, Liu XY et al (2001) Mechanical model for predicting thrust and torque in vibration drilling fibre-reinforced composite materials. Int J Mach Tools Manuf 41(5):641–657

    Article  Google Scholar 

  22. Chang SSF, Bone GM (2009) Thrust force model for vibration-assisted drilling of aluminum 6061-T6. Int J Mach Tools Manuf 49(14):1070–1076

    Article  Google Scholar 

  23. Yang HJ, Ding WF, Chen Y et al (2019) Drilling force model for forced low frequency vibration assisted drilling of Ti-6Al-4V titanium alloy. Int J Mach Tools Manuf 146:103438. https://doi.org/10.1016/j.ijmachtools.2019.103438

    Article  Google Scholar 

  24. Flachs JR, Salahshoor M, Melkote SN (2014) Mechanistic models of thrust force and torque in step-drilling of Al7075-T651. Prod Eng Res Devel 8(3):319–333

    Article  Google Scholar 

  25. Anand RS, Patra K (2017) Mechanistic cutting force modelling for micro-drilling of CFRP composite laminates. CIRP J Manuf Sci Technol 16:55–63

    Article  Google Scholar 

  26. Anand RS, Patra K, Steiner M et al (2017) Mechanistic modeling of micro-drilling cutting forces. Int J Adv Manuf Technol 88(1/4):241–254

    Article  Google Scholar 

  27. Guo DM, Wen Q, Gao H et al (2011) Prediction of the cutting forces generated in the drilling of carbon-fibre-reinforced plastic composites using a twist drill. Proc Inst Mech Eng Part B J Eng Manuf 226(1):28–42

    Article  Google Scholar 

  28. Mao Q, Coutris N, Rack H et al (2020) Investigating ultrasound-induced acoustic softening in aluminum and its alloys. Ultrasonics 102:106005. https://doi.org/10.1016/j.ultras.2019.106005

    Article  Google Scholar 

  29. Yao ZH, Kim GY, Wang ZW et al (2012) Acoustic softening and residual hardening in aluminum: modeling and experiments. Int J Plast 39:75–87

    Article  Google Scholar 

  30. Pohlman R, Lehfeldt E (1966) Influence of ultrasonic vibration on metallic friction. Ultrasonics 4(4):178–185

    Article  Google Scholar 

  31. Nevill GE, Brotzen FR (1957) The effect of vibrations on the static yield strength of a low-carbon steel. Proc Am Soc Testing Mater 7(57):51–58

    Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (Grant No. 51775443), the National Science and Technology Major Project (Grant No. 2017-VII-0015-0111), and China Postdoctoral Science Foundation (Grant No. 2020M683569).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Feng **ong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, XX., Wang, WH., Jiang, RS. et al. Thrust force model for ultrasonic-assisted micro drilling of DD6 superalloy. Adv. Manuf. 10, 313–325 (2022). https://doi.org/10.1007/s40436-021-00381-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40436-021-00381-y

Keywords

Navigation