Log in

Multivariable control of the undesirable axial vibrations of the horizontal drill string

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Although new technologies in energy area such as the wind turbines, solar systems and etcetera are introduced as some alternatives for the oil and gas energy sources, the latter ones are still the most important sources of energy in the world. So, researches have been continued to investigate in these fields to optimize all the steps from the extraction to producing the new products. After our previous article about the horizontal drilling dynamics, modeling the system with mode summation method, modes' convergence analysis, evaluation of the stability situation of the system with changing the parameters and identifying the instability; in this article designing an effective controller for that system is on agenda. Preventing the instability condition can lead to the increasing of the extraction and life time of the components. For the fourth mode in which the instability is observed, the controller is designed and this controller is examined in the case of five modes. It is shown that the controller performs efficiently in suppression of the undesirable axial vibrations of the horizontal drilling process. In addition, through a parametric study of the dynamic system, the number of inputs is decreased and the magnitude of them is reduced to have a more suitable design for using in the realistic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

Data will be available upon request.

Abbreviations

\(\delta (x)\) :

Dirac function

\({F}_{sta}\) :

Amplitude of static force (N)

\({f}_{static}\) :

Value of static force (N)

\({F}_{0}\) :

Amplitude of Mud force (N)

\(t\) :

Time (s)

\({\omega }_{f}\) :

Mud frequency (rad/s)

\({f}_{\mathrm{har}}\) :

Value of mud force (N)

\(x\) :

Position (m)

\(\dot{u}\) :

Axial velocity of drill string (m/s)

\(g\) :

Gravity (m/s2)

\(A\) :

Section surface of string (m2)

\(\rho \) :

Density of string’s material (kg/m3)

\({C}_{1} and {C}_{2}\) :

Constant values in bit–rock interaction force

\({f}_{bit}\) :

Value of bit/rock force (N)

\(\omega \) :

Frequency of response (rad/s)

\({\varphi}_{n}\) :

n-th mode shape

\(u\) :

Displacement of drill string (m)

\(E\) :

Module of elasticity (Pa)

\(l\) :

Length of drill string (m)

\({M}_{i}\) :

Mass of generalized coordinate (kg)

\({q}_{i}\) :

General coordinates

\({\omega }_{i}\) :

Frequency related to i-th mode (rad/s)

\({\dot{q}}_{i}\) :

Velocity of general coordinate (m/s)

\({Q}_{i}\) :

Generalized force related to i-th mode

\(N\) :

Number of discrete modes

\(\mu \) :

Coefficient of friction

\({f}_{fric}\) :

Value of friction force (N)

References

  1. Aadnoy BS, Andersen K (2001) Design of oil wells using analytical friction models. J Petrol Sci Eng 32(1):53–71

    Article  Google Scholar 

  2. Tang L, Yao H, Wang C (2021) Development of remotely operated adjustable stabilizer to improve drilling efficiency. J Natl Gas Sci Eng 95:104174

    Article  Google Scholar 

  3. Macdonald K, Bjune J (2007) Failure analysis of drillstrings. Eng Fail Anal 14(8):1641–1666

    Article  Google Scholar 

  4. Ritto T, Soize C, Sampaio R (2009) Non-linear dynamics of a drill-string with uncertain model of the bit–rock interaction. Int J Non-Linear Mech 44(8):865–876

    Article  Google Scholar 

  5. Sarker MM, Rideout DG, Butt SD (2012) Advantages of an lqr controller for stick-slip and bit-bounce mitigation in an oilwell drillstring. In: ASME International Mechanical Engineering Congress and Exposition (Vol. 45202, pp 1305-1313). American Society of Mechanical Engineers

  6. Jansen JD (1993) Nonlinear dynamics of oilwell drillstrings. Delft University of Technology, TU Delft

    Google Scholar 

  7. Liao C-M et al (2011) Drill-string dynamics: reduced-order models and experimental studies. J Vib Acoust 133(4):041008

    Article  Google Scholar 

  8. Melakhessou H, Berlioz A, Ferraris G (2003) A nonlinear well-drillstring interaction model. J Vib Acoust 125(1):46–52

    Article  Google Scholar 

  9. Asghar Jafari A, Kazemi R, Faraji Mahyari M (2012) The effects of drilling mud and weight bit on stability and vibration of a drill string. J Vib Acoustics, Trans ASME. 134(1)

  10. Wang R et al (2021) Non-linear dynamic analysis of drill string system with fluid-structure interaction. Appl Sci 11(19):9047

    Article  Google Scholar 

  11. Wang B et al (2021) Effect of annular gas-liquid two-phase flow on dynamic characteristics of drill string. Shock Vib 2021:1–13

    Article  Google Scholar 

  12. Wang B et al (2022) Effect of annular gas-liquid two-phase flow on lateral vibration of drill string in horizontal drilling for natural gas hydrate. Processes 11(1):54

    Article  Google Scholar 

  13. Ritto TG, Soize C, Sampaio R (2010) Robust optimization of the rate of penetration of a drill-string using a stochastic nonlinear dynamical model. Comput Mech 45:415–427

    Article  Google Scholar 

  14. Tian J et al (2021) Dynamics and anti-friction characteristics study of horizontal drill string based on new anti-friction tool. Int J Green Energy 18(7):720–730

    Article  Google Scholar 

  15. Spanos P et al (2003) Oil and gas well drilling: a vibrations perspective. Shock Vib Digest 35(2):85–103

    Article  Google Scholar 

  16. Christoforou AP, Yigit AS (2003) Fully coupled vibrations of actively controlled drillstrings. J Sound Vib 267(5):1029–1045

    Article  Google Scholar 

  17. Spanos PD, Chevallier AM, Politis NP (2002) Nonlinear stochastic drill-string vibrations. J Vib Acoust 124(4):512–518

    Article  Google Scholar 

  18. Lobo DM, Ritto TG, Castello DA (2020) A novel stochastic process to model the variation of rock strength in bit-rock interaction for the analysis of drill-string vibration. Mech Syst Signal Proc 141:106451

    Article  Google Scholar 

  19. Pavković D, Deur J, Lisac A (2011) A torque estimator-based control strategy for oil-well drill-string torsional vibrations active dam** including an auto-tuning algorithm. Control Eng Pract 19(8):836–850

    Article  Google Scholar 

  20. Viguié R et al (2009) Using passive nonlinear targeted energy transfer to stabilize drill-string systems. Mech Syst Signal Process 23(1):148–169

    Article  MathSciNet  Google Scholar 

  21. Ritto TG et al (2013) Nonlinear multivariable modeling and stability analysis of vibrations in horizontal drill stringDrill-string horizontal dynamics with uncertainty on the frictional force. J Sound Vib 332(1):145–153

    Article  Google Scholar 

  22. Khajiyeva L, Sabirova Y, Sabirova R (2022) MODELLING OF HORIZONTAL DRILL STRING MOTION BY THE LUMPED-PARAMETER METHOD. J Math Mech Comput Sci 115(3):132–142

    Article  Google Scholar 

  23. Liu W et al (2023) Dynamic modeling and load transfer prediction of drill-string axial vibration in horizontal well drilling. Tribol Int 177:107986

    Article  Google Scholar 

  24. Depouhon A, Detournay E (2014) Instability regimes and self-excited vibrations in deep drilling systems. J Sound Vib 333(7):2019–2039

    Article  Google Scholar 

  25. Richard T, Germay C, Detournay E (2007) A simplified model to explore the root cause of stick–slip vibrations in drilling systems with drag bits. J Sound Vib 305(3):432–456

    Article  Google Scholar 

  26. Huang J et al (2023) Drill-string dynamics model of horizontal coal mine wells considering intermittent borehole wall contact. J Adv Comput Intell Intell Inf 27(2):314–321

    Article  Google Scholar 

  27. Germay C, Denoël V, Detournay E (2009) Multiple mode analysis of the self-excited vibrations of rotary drilling systems. J Sound Vib 325(1–2):362–381

    Article  Google Scholar 

  28. Nandakumar K, Wiercigroch M (2013) Galerkin projections for state-dependent delay differential equations with applications to drilling. Appl Math Model 37(4):1705–1722

    Article  MathSciNet  Google Scholar 

  29. Khajiyeva L et al (2022) Application of the lumped-parameter method for modeling nonlinear vibrations of drill strings with stabilizers in a supersonic gas flow. Appl Math Model 110:748–766

    Article  MathSciNet  Google Scholar 

  30. Ritto TG, Sampaio R (2012) Stochastic drill-string dynamics with uncertainty on the imposed speed and on the bit-rock parameters. Int J Uncertainty Quantification 2(2):111–124

    Article  MathSciNet  Google Scholar 

  31. Sampaio R, Piovan MT, Lozano GV (2007) Coupled axial/torsional vibrations of drill-strings by means of non-linear model. Mech Res Commun 34(5–6):497–502

    Article  Google Scholar 

  32. Liu X et al (2014) State-dependent delay influenced drill-string oscillations and stability analysis. J Vib Acoust 136(5):051008

    Article  Google Scholar 

  33. Perneder L, Detournay E, Downton G (2012) Bit/rock interface laws in directional drilling. Int J Rock Mech Min Sci 51:81–90

    Article  Google Scholar 

  34. Real FF et al (2019) Stochastic modeling for hysteretic bit–rock interaction of a drill string under torsional vibrations. J Vib Control 25(10):1663–1672

    Article  MathSciNet  Google Scholar 

  35. Samuel R (2010) Friction factors: what are they for torque, drag, vibration, bottom hole assembly and transient surge/swab analyses? J Petrol Sci Eng 73(3–4):258–266

    Article  Google Scholar 

  36. Ritto TG, Ghandchi-Tehrani M (2019) Active control of stick-slip torsional vibrations in drill-strings. J Vib Control 25(1):194–202

    Article  MathSciNet  Google Scholar 

  37. Navarro-López EM, Licéaga-Castro E (2009) Non-desired transitions and sliding-mode control of a multi-DOF mechanical system with stick-slip oscillations. Chaos, Solitons Fractals 41(4):2035–2044

    Article  Google Scholar 

  38. Do KD, Pan J (2008) Nonlinear control of an active heave compensation system. Ocean Eng 35(5–6):558–571

    Article  Google Scholar 

  39. Salehi MM, Moradi H (2019) Nonlinear multivariable modeling and stability analysis of vibrations in horizontal drill string. Appl Math Model 71:525–542

    Article  MathSciNet  Google Scholar 

  40. Rajabali F, Moradi H, Vossoughi G (2020) Coupling analysis and control of axial and torsional vibrations in a horizontal drill string. J Petrol Sci Eng 195:107534

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the “Research Office of Sharif University of Technology, Tehran, Iran” for supporting this research through the grant program # QA010910.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Moradi.

Ethics declarations

Conflict of interest

None declared.

Appendix A. Designing GCCF control method

Appendix A. Designing GCCF control method

For designing the controller, method of the pole placement is used; in which, more than one input exists to control the system. So, approaches such as the Bass-Gura and Ackerman methods that are used for the problem with one input are not suitable and it is necessary to use the Generalized Controllability Canonical Form (GCCF) control method.

If the configuration of the equations is in the state space form of Eq. (A-1), equations can be changed to a new form with the suitable transformation into Eq. (A-2). The parameters in new form are described in Eqs. (A-1) and (A-4).

$$ \dot{\underline {x} } = A\underline {x} + Bu $$
(A-1)
$$ \dot{\underline {z} } = A_{G} \underline {z} + B_{G} v $$
(A-2)
$$ A_{G} = \left[ {\begin{array}{*{20}c} {A_{1} } & 0 & \cdots & 0 \\ 0 & {A_{2} } & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & {A_{r} } \\ \end{array} } \right]_{n \times n} $$
(A-3)
$$ B_{G} = \left[ {\begin{array}{*{20}c} {\left\{ {b_{1} } \right\}} & 0 & \cdots & 0 \\ 0 & {\left\{ {b_{2} } \right\}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & {\left\{ {b_{r} } \right\}} \\ \end{array} } \right]_{n \times r} $$
(A-4)

r is the number of inputs. For each matrix, control invariant is used as mentioned in Eqs. (A-5)-(A-8), as:

$$ \mathop \sum \limits_{i = 1}^{r} \gamma_{i} = n $$
(A-5)
$$ \gamma_{1} \ge \gamma_{2} \ge \gamma_{3} \ge \ldots \ge \gamma_{r} \ge 0 $$
(A-6)
$$ \left[ {A_{i} } \right] = \left[ {\begin{array}{*{20}c} 0 & 1 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & 0 \\ \end{array} } \right]_{{\gamma_{i} \times \gamma_{i} }} $$
(A-7)
$$ \left\{ {b_{i} } \right\} = \left[ {\begin{array}{*{20}c} 0 \\ 0 \\ \vdots \\ 1 \\ \end{array} } \right]_{{\gamma_{i} \times 1}} $$
(A-8)

To transfer from Eq. (A-1) into Eq. (A-2), there are three steps as follows:

$$ 1) \underline {x} = T\underline {z} \to \dot{\underline {z} } = \left( {T^{ - 1} {\text{AT}}} \right)\underline {z} + \left( {T^{ - 1} B} \right)u $$
(A-9)
$$ 2) u = F\omega \to \dot{\underline {z} } = \left( {T^{ - 1} {\text{AT}}} \right)\underline {z} + \left( {T^{ - 1} {\text{BF}}} \right)u $$
(A-10)
$$ 3) \omega = v - Hz \to \dot{\underline {z} } = \left( {T^{ - 1} {\text{AT}} - T^{ - 1} {\text{BFH}}} \right)\underline {z} + \left( {T^{ - 1} {\text{BF}}} \right)v = A_{G} \underline {z} + B_{G} v $$
(A-11)

So, the aim is to find H, T and F. Controllability matrix is defined by Eq. (A-12) and if it has n independent columns, the system has the ability to be controlled.

$$ \overline{{M_{c} }} = \left[ {\begin{array}{*{20}c} B & {AB} & {A^{2} B} \\ \end{array} \begin{array}{*{20}c} \ldots & {A^{n - r} B} \\ \end{array} } \right]_{{n \times \left( {n - r + 1} \right)r}} $$
(A-12)

Combination of the independent vectors is set in Eq. (A-13) as:

$$ \widehat{{M_{c} }} = \left[ {\begin{array}{*{20}c} {b_{1} } & {Ab_{1} } & \ldots & {A^{{\gamma_{1} - 1}} b_{1} } & \vdots & {b_{2} } & {Ab_{2} } & \ldots & {A^{{\gamma_{2} - 1}} b_{2} } & \vdots & \ldots & \vdots & {b_{r} } & {Ab_{r} } & \ldots & {A^{{\gamma_{r} - 1}} b_{r} } \\ \end{array} } \right] $$
(A-13)

If the inverse of the above matrices is obtained, and end row of the block for each control invariant is extracted and named \(e_{1}\) to \(e_{r}\), then the inverse matrix of T is achieved as:

$$ T^{ - 1} = \left[ {\begin{array}{*{20}c} {e_{1} } \\ {e_{1} A} \\ \vdots \\ {e_{1} A^{{\gamma_{1} - 1}} } \\ \vdots \\ {e_{r} } \\ {e_{r} A} \\ \vdots \\ {e_{r} A^{{\gamma_{r} - 1}} } \\ \end{array} } \right] $$
(A-14)

With specifying T, the matrices F and H are calculated as below:

$$ F = (B_{G}^{T} T^{ - 1} B)^{ - 1} $$
(A-15)
$$ H = B_{G}^{T} \left( {T^{ - 1} AT - A_{G} } \right) $$
(A-16)

At the end, with feedback, the system that the invariants are transformed to the zero, is changed to the desired matrix \(A_{d}\). The structure of \(A_{d}\) is similar to \(A_{G}\) but the sub matrix (\(A_{i}\)) must be changed to the desired dynamics equations.

$$ v = - {\Gamma z} \to \dot{\underline {z} } = \left( {A_{G} - B_{G} {\Gamma }} \right)\underline {z} = A_{d} \underline {z} $$
(A-17)
$$ {\Gamma } = B_{G}^{T} \left( {A_{G} - A_{d} } \right) $$
(A-18)

For simplifying the above transformations, all of them can be collected and rewritten through new feedback (\(K\)) as:

$$K=F(\Gamma +H){T}^{-1}$$
(A-19)

According to Eqs. (23)-(28) and Eq. (31), state matrix can be obtained as below:

$$\left[\begin{array}{c}\dot{{x}_{3}}\\ \dot{{x}_{4}}\\ \begin{array}{c}\dot{{x}_{5}}\\ \dot{{x}_{6}}\\ \begin{array}{c}\dot{{x}_{7}}\\ \begin{array}{c}\dot{{x}_{8}}\\ \dot{e}\end{array}\end{array}\end{array}\end{array}\right]=\left[\begin{array}{ccccccc}0& 1& 0& 0& 0& 0& 0\\ -{{\omega }_{2}}^{2}& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 1& 0& 0& 0\\ 0& 0& -{{\omega }_{3}}^{2}& 0& 1& 0& 0\\ 0& 0& 0& 0& 0& 1& 0\\ 0& 0& 0& 0& -{{\omega }_{4}}^{2}& 0& 0\\ 0& 0& 0& 0& 0& 0& 0\end{array}\right]\left[\begin{array}{c}{x}_{3}\\ {x}_{4}\\ {x}_{5}\\ {x}_{6}\\ {x}_{7}\\ {x}_{8}\\ e\end{array}\right]+\left[\begin{array}{cccc}0& 0& 0& 0\\ 1& 0& 0& 0\\ 0& 0& 0& 0\\ 0& 1& 0& 0\\ 0& 0& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 1\end{array}\right]\left[\begin{array}{c}{u}_{1}\\ {u}_{2}\\ {u}_{3}\\ {u}_{4}\end{array}\right]$$
(A-20)
$$ A = \left[ {\begin{array}{*{20}c} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ { - \omega_{2}^{2} } & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & { - \omega_{3}^{2} } & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & { - \omega_{4}^{2} } & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right] $$
(A-21)
$$ B = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} } \right] $$
(A-22)
$$ \widehat{{M_{c} }} = \left[ {\begin{array}{*{20}c} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & { - \omega_{4}^{2} } & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} } \right] $$
(A-23)
$$ \gamma_{1} = 2,\gamma_{2} = 2,\gamma_{3} = 2,\gamma_{4} = 1 $$
(A-24)

According to the control theory, the T matrix is achieved as:

$$ \widehat{{M_{c} }}^{ - 1} = \left[ {\begin{array}{*{20}c} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & {\frac{1}{{ - \omega_{4}^{2} }}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} } \right] $$
(A-25)
$$ \left[ {\begin{array}{*{20}c} {e_{1} } \\ {e_{2} } \\ {e_{3} } \\ {e_{4} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {\frac{1}{{ - \omega_{4}^{2} }}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} } \right] $$
(A-26)
$$ T^{ - 1} = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {\frac{1}{{ - \omega_{4}^{2} }}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} } \right] $$
(A-27)

\(B_{G}\) is equal to \(B\) because it is in standard form and \(A_{G}\) can be written as below:

$$ A_{G} = \left[ {\begin{array}{*{20}c} {\left[ {\begin{array}{*{20}c} 0 & 1 \\ 0 & 0 \\ \end{array} } \right]} & 0 & \cdots & 0 \\ 0 & {\left[ {\begin{array}{*{20}c} 0 & 1 \\ 0 & 0 \\ \end{array} } \right]} & {} & \vdots \\ \vdots & {} & {\left[ {\begin{array}{*{20}c} 0 & 1 \\ 0 & 0 \\ \end{array} } \right]} & 0 \\ 0 & \cdots & 0 & 0 \\ \end{array} } \right] $$
(A-28)

The form of \(A_{d}\) is similar to \(A_{G}\), with this difference that instead of the zero poles, it has desirable poles. For this target, Butterworth method is used to determine these poles as:

$$ n = 1 \to z_{1} = - 1 \to s + 1 = 0 \to A_{4} = \left[ { - 1} \right] $$
(A-29)
$$ n = 2 \to z_{1} = \frac{\sqrt 2 }{2}\left( { - 1 \pm j} \right) \to s^{2} + \sqrt 2 z + 1 = 0 \to A_{1 \to 3} = \left[ {\begin{array}{*{20}c} 0 & 1 \\ { - \sqrt 2 } & { - 1} \\ \end{array} } \right] $$
(A-30)

So, the \(A_{d}\) matrix is written as below:

$$ A_{d} = \left[ {\begin{array}{*{20}c} {\left[ {\begin{array}{*{20}c} 0 & 1 \\ { - \sqrt 2 } & { - 1} \\ \end{array} } \right]} & 0 & \cdots & 0 \\ 0 & {\left[ {\begin{array}{*{20}c} 0 & 1 \\ { - \sqrt 2 } & { - 1} \\ \end{array} } \right]} & {} & \vdots \\ \vdots & {} & {\left[ {\begin{array}{*{20}c} 0 & 1 \\ { - \sqrt 2 } & { - 1} \\ \end{array} } \right]} & 0 \\ 0 & \cdots & 0 & { - 1} \\ \end{array} } \right] $$
(A-31)
$$ F = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} } \right] $$
(A-32)
$$ H = \left[ {\begin{array}{*{20}c} { - \omega_{2}^{2} } & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & { - \omega_{3}^{2} } & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & { - \omega_{4}^{2} } & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right] $$
(A-33)
$$ {\Gamma } = \left[ {\begin{array}{*{20}c} {\sqrt 2 } & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & {\sqrt 2 } & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {\sqrt 2 } & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} } \right] $$
(A-34)
$$ K = \left[ {\begin{array}{*{20}c} { - \omega_{2}^{2} } & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & { - \omega_{3}^{2} } & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {1.000} & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} } \right] $$
(A-35)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, M.M., Moradi, H. Multivariable control of the undesirable axial vibrations of the horizontal drill string. Int. J. Dynam. Control 12, 1769–1787 (2024). https://doi.org/10.1007/s40435-023-01299-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-023-01299-y

Keywords

Navigation