Log in

Metabolic changes of the red marine alga Gracilariopsis tenuifrons elicited by high PAR in laboratory

  • Biochemistry & Physiology - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Although known, the photosynthetically active radiation (PAR) triggers responses that still deserve attention. Then, our study aims to investigate the photoresilience responses of Gracilariopsis tenuifrons (C.J. Bird and E.C. Oliveira) Fredericq and Hommersand and the metabolic changes related with NO levels to understand the connective physiological responses under high light exposure. This outcome was evaluated after exposing this red alga for a week, to PAR levels of 60 and 600 μmol photons m−2 s−1, in both day and night phases. Growth rate, CHN (carbon, hydrogen, and nitrogen) contents, photosynthetic pigments (phycoerythrin, phycocyanin, chlorophyll-a, and carotenoids), total soluble proteins (TSP), antioxidant capacity, and nitric oxide (NO) production were analyzed. High PAR promoted the dissociation and diminution of photosynthetic pigments, thickened cell walls, increased C and H levels and antioxidant activity, raised NO values, and attenuation of N levels. Phycobiliproteins together with nitrogen and carbon metabolisms, antioxidant activity, and remarkable NO action have played significant roles in the photoresilience, as well as light-stress responses in G. tenuifrons under high PAR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdala-Diaz RT, Cabello-Pasini A, Perez-Rodriguez E, Conde Alvarez RM, Figueroa FL (2006) Daily and seasonal variations of optimum quantum yield and phenolic compounds in Cystoseira tamariscifolia (Phaeophyta). Mar Biol 148:459–465

    Article  CAS  Google Scholar 

  • An L, Liu Y, Zhang M, Chen T, Wang X (2005) Effects of nitric oxide on growth of maize seedlings leaves in presence of ultraviolet-B radiation. J Plant Physiol 162:317–326

    Article  CAS  PubMed  Google Scholar 

  • Arnold TM, Tanner CE, Hatch WI (1995) Phenotypic variation in polyphenolic content of the tropical brown alga Lobophora variegata as a function of nitrogen availability. Mar Ecol Prog Ser 123:177–183

    Article  CAS  Google Scholar 

  • Balskus EP, Walsh CT (2010) The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Sci 329:1653–1656

    Article  CAS  Google Scholar 

  • Banskota AH, Stefanova R, Sperker S, Lall S, Craigie JS, Hafting JT (2014) Lipids isolated from the cultivated red alga Chondrus crispus inhibit nitric oxide production. J Appl Phycol 26:1565–1571

    Article  CAS  Google Scholar 

  • Baroli I, Do AD, Yamane T, Niyogi KK (2003) Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress. Plant Cell 15:992–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beer S, Eshel A (1985) Determining phycoerythrin and phycocyanin concentration in aqueous crude extracts of red algae. Aust J Mar Freshw Res 36:785–792

    Article  CAS  Google Scholar 

  • Beligni MV, Lamatina L (1999) NO protects against cellular damage produced by methilviologes hebicides in potato plants. Nitric Oxide 3:199–208

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya A, Sood P, Citovsky V (2010) The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol 11:705–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird CJ, Oliveira EC (1986) Gracilaria tenuifrons sp. nov. (Gigartinales, Rhodophyta), a species from the tropical western Atlantic with superficial spermatangia. Phycol 25:313–320

    Article  Google Scholar 

  • Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200

    Article  CAS  Google Scholar 

  • Blokhina O, Fagerstedt KV (2010) Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. Physiol Plant 138:447–462

    Article  CAS  PubMed  Google Scholar 

  • Bondet V, Brand-Williams W, Berset C (1997) Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. LWT 30:609–615

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT 28:25–30

    Article  CAS  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  PubMed  Google Scholar 

  • Chow F, Pedersén M, Oliveira MC (2013) Modulation of nitrate reductase activity by photosynthetic electron transport chain and nitric oxide balance on the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta). J Appl Phycol 25:1847–1853

    Article  CAS  Google Scholar 

  • Chrapusta E, Kaminski A, Duchnik K, Bober B, Adamski M, Bialczyk S (2017) Mycosporine like amino acids: potential health and beauty ingredients. Mar Drugs 15:2–29

    Article  Google Scholar 

  • Costa E, Plastino E, Petti R, Oliveira EC, Oliveira MC (2012) The Gracilariaceae Germplasm Bank of the University of São Paulo, Brazil—a DNA barcoding approach. J Appl Phycol 24:1643–1653

    Article  CAS  Google Scholar 

  • Coueé I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459

    Article  PubMed  Google Scholar 

  • Edwards P (1970) Illustrated guide to the seaweeds and seagrasses in the vicinity of Porto Aransas. University of Texas, Texas

    Google Scholar 

  • Facci P (2014) Chapter 8—What will be the next? In: Facci P (ed) Biomolecular electronics—bioelectronics and the electrical control of biological systems and reactions. Elsevier, MA, pp 221–229

    Google Scholar 

  • Fernández-Marín B, Roach T, Verhoeven A, García-Plazaola JI (2021) Shedding light on the dark side of xanthophyll cycles. New Phytol 230:1336–1344

    Article  PubMed  Google Scholar 

  • Foresi N, Correa-Aragunde N, Parisi G, Caló G, Salerno G, Lamattina L (2010) Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22:3816–3830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:862–905

    Article  Google Scholar 

  • Gantt E (1990) Pigmentation and photoacclimatation. In: Cole KM, Sheath RG (eds) Biology of the red algae. Cambridge University Press, London, pp 203–220

    Google Scholar 

  • Giordano M, Beardall J, Raven J (2005) A CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  CAS  PubMed  Google Scholar 

  • Glaring MA, Skryhan K, Köting O, Zeeman SC, Blennow A (2012) Comprehensive survey of redox sensitive starch metabolizing enzymes in Arabidopsis thaliana. Plant Physiol Biochem 58:89–97

    Article  CAS  PubMed  Google Scholar 

  • Glazer AN (1994) Phycobiliproteins—a family of valuable, widely used fluorophores. J Appl Phycol 6:105–112

    Article  CAS  Google Scholar 

  • Grassi L, Cabrele C (2019) Susceptibility of protein therapeutics to spontaneous chemical modifications by oxidation, cyclization, and elimination reactions. Amino Acids 51:1409–1431

    Article  CAS  PubMed  Google Scholar 

  • Harb TB, Nardelli A, Chow F (2018) Physiological responses of Pterocladiella capillacea (Rhodophyta, Gelidiales) under two light intensities. Photosynthetica 56:1093–1106

    Article  CAS  Google Scholar 

  • Harrison PJ, Hurd CL (2001) Nutrient physiology of seaweeds: application of concepts to aquaculture. Cah Biol Mar 42:71–82

    Google Scholar 

  • Häusler RE, Heinrichs L, Schimitz J, Flügge U-I (2014) How sugar might coordinate chloroplast and nuclear gene expression during acclimation to high light intensities. Mol Plant 7:1121–1137

    Article  PubMed  Google Scholar 

  • He Y, Lian J, Wang L, Tan L, Khan F, Li Y, Wang H, Rebours C, Han D, Hu Q (2023) Recovery of nutrients from aquaculture wastewater: effects of light quality on the growth, biochemical composition, and nutrient removal of Chlorella sorokiniana. Algal Res 69:102965

    Article  Google Scholar 

  • Hemlata AS, Fatma T (2018) Extraction, purification and characterization of phycoerythrin from Michrochaete and its biological activities. Biocatal Agric Biotechnol 13:84–89

    Article  Google Scholar 

  • Keren N, Krieger-Liszkay A (2011) Photoinhibition: molecular mechanisms and physiological significance. Physiol Plant 142:1–5

    Article  CAS  PubMed  Google Scholar 

  • Khontinchenko SV, Yakovleva I (2005) Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochem 66:73–79

    Article  Google Scholar 

  • Kim JA, Kim H-S, Choi S-H, Jang J-Y, Jeong M-J, Lee SI (2017) The importance of the circadian clock in regulating plant metabolism. Int J Mol Sci 18:2–11

    Article  CAS  Google Scholar 

  • Klyachko-Gurvich GL, Tsoglin LN, Doucha J, Kopetskii J, Shebalina IB, Semenenko VE (1999) Desaturation of fatty acids as an adaptive response to shifts in light intensity. Physiol Plant 107:240–249

    Article  CAS  Google Scholar 

  • Kumar A, Castellano I, Patti FP, Palumbo A, Buia MC (2015) Nitric oxide in marine photosynthetic organisms. Nitric Oxide 47:34–39

    Article  CAS  PubMed  Google Scholar 

  • Kumari P, Kumar M, Reddy CRK, Jha B (2013) Algal lipids, fatty acids and sterols. In: Dominguez E (ed) Functional ingredients from algae for foods and nutraceuticals. Woodhead Publishing, pp 87–134

    Chapter  Google Scholar 

  • Kupisz K, Sujak A, Patyra M, Trebacz K, Gruszecki WI (2008) Can membrane-bound carotenoid pigment zeaxanthin carry out a transmembrane proton transfer? BBA 1778:2334–2340

    Article  CAS  PubMed  Google Scholar 

  • Levi M, Sendersky E, Schwartz R (2018) Decomposition of cyanobacterial light harvesting complexes: NblA-dependent role of the bilin lyase homolog NblB. Plant J 94:813–821

    Article  CAS  PubMed  Google Scholar 

  • Li L, Nelson CJ, Trösch J, Castleden I, Huang S, Millar AH (2017) Protein degradation rate in Arabidopsis thaliana leaf growth and development. Plant Cell 29:207–228

    Article  CAS  PubMed Central  Google Scholar 

  • Li X, Slavens S, Crunkleton DW, Johanes TW (2021) Interactive effect of light quality and temperature on Chlamydomonas reinhardtii growth kinetics and lipid synthesis. Algal Res 53:102127

    Article  Google Scholar 

  • Lignell A, Pedersén M (1989) Effects of pH and inorganic carbon concentration on growth of Gracilaria secundata. Br Phycol J 24:83–89

    Article  Google Scholar 

  • Lu X, Huan L, Gao S, He L, Wang G (2016) NADPH from the oxidative pentose phosphate pathway drives the operation of cyclic electron flow around photosystem I in high-intertidal macroalgae under severe salt stress. Physiol Plant 156:397–406

    Article  CAS  PubMed  Google Scholar 

  • Macler BA (1986) Regulation of carbon flow by nitrogen and light in the red alga, Gelidium coulteri. Plant Physiol 82:136–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marco GJ (1968) A rapid method of evaluation of antioxidants. J Am Oil Chem Soc 45:594–598

    Article  CAS  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19

    Article  CAS  PubMed  Google Scholar 

  • Moreau M, Lee GI, Wang Y, Crane BR, Klessig DF (2008) AtNOS/AtNOA1 is a functional Arabidopsis thaliana GTPase and not a nitric-oxide synthase. J Biol Chem 283:32957–32967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morroney JV, Somanchi A (1999) How do algae concentrate CO2 to increase the efficiency of photosynthetic carbon fixation? Plant Physiol 119:9–16

    Article  Google Scholar 

  • Muramatsu M, Hihara Y (2012) Acclimation to high light conditions in cyanobacteria: from gene expression to physiological responses. J Plant Res 125:11–39

    Article  CAS  PubMed  Google Scholar 

  • Murchie EH, Horton P (1997) Acclimation of photosynthesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity and habitat preference. Plant Cell Environ 20:438–448

    Article  Google Scholar 

  • Nelson CJ, Millar AH (2015) Protein turnover in plant biology. Nat Plants 1:1–7

    Article  Google Scholar 

  • Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8:68–82

    Article  CAS  PubMed  Google Scholar 

  • Oliveira Filho EC (1998) Seaweeds resources of Brazil. In: Critchley AT, Ohno M (eds) Seaweeds resources of the world. Japan International Cooperation Agency, Japan, pp 366–371

    Google Scholar 

  • Pacoda D, Montefusco A, Piro G, Dalessandro G (2004) Reactive oxygen species and nitric oxide affect cell wall metabolism in tobacco BY-2 cells. J Plant Physiol 161:1143–1156

    Article  CAS  PubMed  Google Scholar 

  • Pettitt TR, Jones AL, Harwood JL (1989) Lipid metabolism in the red marine algae Chondrus crispus and Polysiphonza lanosa as modified by temperature. Phytochem 28:2053–2058

    Article  CAS  Google Scholar 

  • Rademacher N, Ramona K, Fujiwara T, Mettler-Altmann T, Miyagishima S, Hagemann M, Eisenhut M, Weber APM (2016) Photorespiratory glycolate oxidase is essential for the survival of the red alga Cyanidioschyzon merolae under ambient CO2 conditions. J Exp Bot 67:165–3175

    Article  Google Scholar 

  • Raven JA (2011) The cost of photoinhibition. Physiol Plant 142:87–104

    Article  CAS  PubMed  Google Scholar 

  • Rockwell NC, Martin SS, Gulevich AG, Legarias JC (2012) Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily. Biochemistry 51:1449–1463

    Article  CAS  PubMed  Google Scholar 

  • Ross C, Kupper FC, Jacobs RS (2006) Involvement of reactive oxygen species and reactive nitrogen species in wound response of Dasycladus vermicularis. Chem Biol 13:353–364

    Article  CAS  PubMed  Google Scholar 

  • Röszer T (2014) Biosynthesis of nitric oxide in plants. In: Khan MN, Mobin M, Mohammad F, Corpas FJ (eds) Nitric oxide in plants: metabolism and role in stress physiology. Springer, New York, pp 17–32

    Chapter  Google Scholar 

  • Rowell RM, Pettersen R, Han JS, Rowell JS, Tshabalala MA (2005) Handbook of wood chemistry and wood. In: Rowell RM (ed) Composites cell wall chemistry. CRC Press LLC, pp 35–76

    Google Scholar 

  • Santos-Sánchez NF, Salas-Coronado R, Villanueva-Cañongo C, Hernández-Carlos B (2019) Antioxidant compounds and their antioxidant mechanism. IntechOpen

  • Sato N, Moriyama T, Mori N, Toyoshima M (2017) Lipid metabolism and potentials of biofuel and high added-value oil production in red algae. World J Microbiol Biotechnol 33:74

    Article  PubMed  Google Scholar 

  • Schmid M, Guihéneuf F, Nitschke U, Stengel DB (2021) Acclimation potential and biochemical response of four temperate macroalgae to light and future seasonal temperature scenarios. Algal Res 54:102190

    Article  Google Scholar 

  • Schubert N, Mendoza-García E (2008) Photoinhibition in red algal species with different carotenoid profiles. J Phycol 44:1437–1446

    Article  CAS  PubMed  Google Scholar 

  • Serive B, Nicolau E, Bérard J-B, Kaas R, Pasquet V, Picot L, Cadoret J-P (2017) Community analysis of pigment patterns from 37 microalgae strains reveals new carotenoids and porphyrins characteristic of distinct strains and taxonomic groups. PLoS ONE 12:e0171872

    Article  PubMed  PubMed Central  Google Scholar 

  • Sewón P, Mikola H, Lehtinen T, Kallio P (1997) Polar lipids and net photosynthesis potential of subartic Diapensia lapponica. Phytochem 46:1339–1347

    Article  Google Scholar 

  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019) Response of phenylpropanoid pathway and the role of polyphenols in plant under abiotic stress. Molecules 24:2–22

    Article  Google Scholar 

  • Shi S, Wang G, Wang Y, Zhang L, Zhang L (2005) Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide 13:1–9

    Article  CAS  PubMed  Google Scholar 

  • Shiva S, Sack MN, Greer JJ, Duranski M, Ringwood LA, Burwell L, Wang X, MacArthur PH, Shoja A, Raghavachari N, Calvert JW, Brookes PS, Lefer DJ, Gladwin MT (2007) Nitrite augments tolerance to ischemia/reperfusion injury via modulation of mitochondrial electron transfer. J Exp Med 204:2089–2102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simionato D, Block MA, La Rocca N, Jouhet J, Maréchal E, Finazzi G, Morosinotto T (2013) The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast, galactolipids, and reorganization of the photosynthetic apparatus. Eukaryot Cell 12:665–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skryhan K, Cuesta-Seijo JA, Nielsen MM, Marri L, Mellor SB, Glaring MA, Jensen PE, Palcic MM, Blennow A (2015) The role of cysteine residues in redox regulation and protein stability of Arabidopsis thaliana starch synthase 1. PLoS ONE 10:e0136997

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonoike K (2011) Photoinhibition of photosystem I. Physiol Plant 142:56–64

    Article  CAS  PubMed  Google Scholar 

  • Stec B (2012) Structural mechanism of RuBisCO activation by carbamylation of active site lysine. PNAS 109:18785–18790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinhoff SF, Graeve M, Bartoszek K, Bischof K, Wiencke C (2012) Phlorotannin production and lipid oxidation as a potential protective function against high photosynthetically active and UV radiations in gametophytes of Alaria esculenta (Alariales, Phaeophyceae). Photochem Photobiol 88:46–57

    Article  CAS  PubMed  Google Scholar 

  • Talarico L, Maranzana G (2000) Light and adaptive responses in red macroalgae: an overview. J Photochem Photobiol B Biol 56:1–11

    Article  CAS  Google Scholar 

  • Tamary E, Kiss V, Nevo R, Adam Z, Bernát G, Rexroth S, Rögner M, Reich Z (2012) Structural and functional alterations of cyanobacterial phycobilisomes induced by light stress. BBA 1817:319–327

    CAS  PubMed  Google Scholar 

  • Torres J, Rivera A, Clark G, Roux SJ (2008) Participation of extra cellular nucleotides in the wound response of Dasycladus vermicularis and Acetabularia acetabulum (Dasycladales, Chlorophyta). J Phycol 44:1504–1511

    Article  CAS  PubMed  Google Scholar 

  • Torres PB, Chow F, Santos DYAC (2014) Growth and photosynthetic pigments of Gracilariopsis tenuifrons (Rhodophyta, Gracilariaceae) under high light in vitro. J Appl Phycol 27:1243–1251

    Article  Google Scholar 

  • Torres PB, Chow F, Ferreira MJP, Santos DYAC (2016) Mycosporine-like amino acids from Gracilariopsis tenuifrons (Gracilariaceae, Rhodophyta) under high light. J Appl Phycol 28:2035–2040

    Article  CAS  Google Scholar 

  • Tossi V, Amenta M, Lamattina L, Cassia R (2009) An increase in the concentration of abscisic acid is critical for nitric oxide-mediated plant adaptative responses to UV-B irradiation. New Phytol 181:871–879

    Article  CAS  PubMed  Google Scholar 

  • Toyoshima M, Sato N (2015) High-level accumulation of triacylglycerol and starch in photoautotrophycally grown Chlamydomonas debaryana NIES-2212. Plant Cell Physiol 56:2447–2456

    Article  CAS  PubMed  Google Scholar 

  • Ursi S, Plastino EM (2001) Growth of reddish and light green strains of Gracilaria sp. (Gracilariales, Rhodophyta) in two culture media: analysis of different reproductive phases. Revta Brasil Bot 24:587–594

    Google Scholar 

  • Vergara JJ, Bird KT, Niel FX (1995) Nitrogen assimilation following NH4+ pulses in the red alga Gracilariopsis lemaneiformis: effect on C metabolism. Mar Ecol Prog Ser 122:253–263

    Article  CAS  Google Scholar 

  • Wada N, Sakamoto T, Matsugo S (2015) Mycosporine-like amino acids and their derivatives as natural antioxidants. Antioxidants 4:603–646

    Article  CAS  PubMed Central  Google Scholar 

  • Wang M, Shen O, Xu G, Guo S (2014) New insight into the strategy for nitrogen metabolism in plant cells. Int Rev Cell Mol Biol 310:2–37

    Google Scholar 

  • Waterman PG, Mole S (1994) Analysis of phenolic plant metabolites. Blackwell Scientific Publications

    Google Scholar 

  • Wijesekara I, Pangestutia R, Kim S-K (2011) Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym 84:14–21

    Article  CAS  Google Scholar 

  • Zhao C, Höppner A, Xu Q-Z, Zhao K-H (2017) Structures and enzymatic mechanisms of phycobiliprotein lyases CpcE/F and PecE/F. PNAS 114:13170–13175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Grahan JE, Ludwig M, **ong W, Alvey RM, Shen G, Bryant DA (2010) Roles of xanthophyll carotenoids in protection against photoinhibition and oxidative stress in the cyanobacterium Synechococcus sp. strain PCC 7002. Arch Biochem Biophys 504:86–99

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the technical support of Laboratory of Cell Biology and Laboratory of Marine Algae ‘Édison José de Paula’, University of São Paulo, Brazil as much as to FAPESP, Brazil.

Funding

This investigation was supported by the São Paulo Research Foundation (FAPESP, Brazil) by Master Science scholarship to DS (FAPESP 2010/06732-5) and fellowship for FC (FAPESP 2010/02948-3).

Author information

Authors and Affiliations

Authors

Contributions

DRS and FC conceived the study and designed the experiments, and conducted the experiments and data analyses. DRS wrote the initial draft. FC provided financial support and scientific reviews for final manuscript. EISF contributed with laboratorial support and critical read.

Corresponding author

Correspondence to Fungyi Chow.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serra, D.R., Floh, E.I.S. & Chow, F. Metabolic changes of the red marine alga Gracilariopsis tenuifrons elicited by high PAR in laboratory. Braz. J. Bot (2024). https://doi.org/10.1007/s40415-024-01015-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40415-024-01015-w

Keywords

Navigation