Log in

Cost Effectiveness of Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors, Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists, and Dipeptidyl Peptidase-4 (DPP-4) Inhibitors: A Systematic Review

  • Systematic Review
  • Published:
PharmacoEconomics Aims and scope Submit manuscript

A Correction to this article was published on 04 September 2019

This article has been updated

Abstract

Objective

This study aimed to systematically review cost-effectiveness studies of newer antidiabetic medications.

Methods

The PubMed/MEDLINE, EMBASE, CINAHL Plus, Cochrane Library–NHS Economic Evaluation Database (Wiley), Cochrane Library–Health Technology Assessment Database (Wiley), Cochrane Library–Database of Abstracts of Reviews of Effects (Wiley), and the Cost-Effectiveness Analysis Registry databases (from 1 January 2000 to 1 June 2018) were searched. The search strategies included the Medical Subject Heading (MeSH) term ‘economics’, and the MeSH entry terms ‘cost’, ‘cost effectiveness’, ‘value’, and ‘cost utility’, as well as all names for GLP-1 receptor agonists, DPP-4 inhibitors, and SGLT2 inhibitors. Inclusion criteria included (1) cost-effectiveness studies of the newer antidiabetic medications, including sodium-glucose cotransporter-2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, and dipeptidyl peptidase-4 (DPP-4) inhibitors; and (2) full-text publications in English. Two reviewers independently screened the titles, abstracts, and full-text articles to select studies for data extraction. Discrepancies were resolved by discussion and consensus. The quality of reporting cost-effectiveness analyses was assessed using the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) guideline.

Results

Among 85 studies selected, 82 clearly stated the types of diabetes model used (e.g. CORE model), and 70 studied used validated diabetes models. Seventy-four (87%) studies were funded by pharmaceutical companies, and 72 (85%) studies were conducted from a payer’s perspective. Seventy-six (89%) studies presented were of good quality (20–24 CHEERS items), and nine were of moderate quality (14–19 items). Thirty studies compared newer antidiabetic medications with insulin, 3 studies compared newer antidiabetic medications with thiazolidinediones (TZDs), 15 studies compared newer antidiabetic medications with sulfonylureas, 40 studies compared new antidiabetic medications with alternative newer antidiabetic medication, and 9 studies compared other antidiabetic agents that were not included above. Newer antidiabetic medications were reported to be cost-effective in 26 of 30 (87%) studies compared with insulin, and 13 of 15 (87%) studies compared with sulfonylureas.

Conclusions

Most economic evaluations of antidiabetic medications have good reporting quality and use validated diabetes models. The newer antidiabetic medications in most of the reviewed studies were found to be cost effective, compared with insulin, TZDs, and sulfonylureas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 04 September 2019

    CORE diabetes model was used throughout the article for consistency.

References

  1. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nature Rev Dis Prim. 2015;1:15019.

    Article  Google Scholar 

  2. Rowley WR, Bezold C, Arikan Y, Byrne E, Krohe S. Diabetes 2030: insights from yesterday, today, and future trends. Popul Health Manag. 2017;20(1):6–12.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387(10027):1513–30.

  4. World Health Organization. Global report on diabetes: World Health Organization; 2016.

  5. Economic Costs of Diabetes in the U.S. in 2017. Diabetes Care. 2018;41(5):917–928.

  6. GBD 2016 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1260–344.

  7. Tuomilehto J, Schwarz PEH. Preventing Diabetes: Early Versus Late Preventive Interventions. Diabetes Care. 2016;39 Suppl 2):S115.

  8. Gourgari E, Wilhelm EE, Hassanzadeh H, Aroda VR, Shoulson I. A comprehensive review of the FDA-approved labels of diabetes drugs: Indications, safety, and emerging cardiovascular safety data. J Diabetes Compl. 2017;31(12):1719–27.

  9. van Baar MJB, van Ruiten CC, Muskiet MHA, van Bloemendaal L, Ijzerman RG, van Raalte DH. SGLT2 inhibitors in combination therapy: from mechanisms to clinical considerations in type 2 diabetes management. Diabetes Care. 2018;41(8):1543.

    Article  CAS  PubMed  Google Scholar 

  10. Zhuo X, Zhang P, Kahn HS, Bardenheier BH, Li R, Gregg EW. Change in medical spending attributable to diabetes: national data from 1987 to 2011. Diabetes Care. 2015;38(4):581.

    PubMed  Google Scholar 

  11. Smith-Spangler CM, Bhattacharya J, Goldhaber-Fiebert JD. Diabetes, its treatment, and catastrophic medical spending in 35 develo** countries. Diabetes Care. 2012;35(2):319–26.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gray AM, Clarke PM, Wolstenholme JL, Wordsworth S. Applied methods of cost-effectiveness analysis in healthcare. Oxford: Oxford University Press; 2011.

    Google Scholar 

  13. Shao H, Fonseca V, Stoecker C, Liu S, Shi L. Novel Risk Engine for Diabetes Progression and Mortality in USA: building, Relating, Assessing, and Validating Outcomes (BRAVO). Pharmacoeconomics. 2018;36(9):1125–34.

    Article  PubMed  Google Scholar 

  14. Palmer AJ, Roze S, Valentine WJ, Minshall ME, Foos V, Lurati FM, et al. The CORE Diabetes Model: projecting long-term clinical outcomes, costs and cost-effectiveness of interventions in diabetes mellitus (types 1 and 2) to support clinical and reimbursement decision-making. Curr Med Res Opin. 2004;20(Suppl 1):S5–26.

    Article  PubMed  Google Scholar 

  15. Clarke PM, Gray AM, Briggs A, Farmer AJ, Fenn P, Stevens RJ, et al. A model to estimate the lifetime health outcomes of patients with type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model (UKPDS no. 68). Diabetologia. 2004;47(10):1747–59.

  16. Geng J, Yu H, Mao Y, Zhang P, Chen Y. Cost effectiveness of dipeptidyl peptidase-4 inhibitors for type 2 diabetes. Pharmacoeconomics. 2015;33(6):581–97.

    Article  PubMed  Google Scholar 

  17. Permsuwan U, Dilokthornsakul P, Saokaew S, Thavorn K, Chaiyakunapruk N. Cost-effectiveness of dipeptidyl peptidase-4 inhibitor monotherapy in elderly type 2 diabetes patients in Thailand. ClinicoEcon Outcomes Res. 2016;8:521–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, et al. Consolidated health economic evaluation reporting standards (CHEERS) statement. Cost Effect Resour Alloc. 2013;11(1):6.

    Article  Google Scholar 

  20. Ray JA, Boye KS, Yurgin N, Valentine WJ, Roze S, McKendrick J, et al. Exenatide versus insulin glargine in patients with type 2 diabetes in the UK: a model of long-term clinical and cost outcomes. Curr Med Res Opin. 2007;23(3):609–22.

    Article  CAS  PubMed  Google Scholar 

  21. Shaya FT, Sohn K, Lee S, Bleu-Laine R, Lim J, Casciano M. Clinical and economic evaluation of exenatide for formulary decisions. J Med Econ. 2007;10(4):529–37.

    Article  Google Scholar 

  22. Minshall ME, Oglesby AK, Wintle ME, Valentine WJ, Roze S, Palmer AJ. Estimating the long-term cost-effectiveness of exenatide in the United States: an adjunctive treatment for type 2 diabetes mellitus. Value Health. 2008;11(1):22–33.

    Article  PubMed  Google Scholar 

  23. Brändle M, Erny-Albrecht KM, Goodall G, Spinas GA, Streit P, Valentine WJ. Exenatide versus insulin glargine: a cost-effectiveness evaluation in patients with Type 2 diabetes in Switzerland. Int J Clin Pharmacol Ther. 2009;47(8):501–15.

    Article  PubMed  Google Scholar 

  24. Mittendorf T, Smith-Palmer J, Timlin L, Happich M, Goodall G. Evaluation of exenatide vs. insulin glargine in type 2 diabetes: Cost-effectiveness analysis in the German setting. Diabetes Obes Metab. 2009;11(11):1068–79.

  25. Sullivan SD, Alfonso-Cristancho R, Conner C, Hammer M, Blonde L. Long-term outcomes in patients with type 2 diabetes receiving glimepiride combined with liraglutide or rosiglitazone. Cardiovasc Diabetol. 2009;8:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee WC, Conner C, Hammer M. Results of a model analysis of the cost-effectiveness of liraglutide versus exenatide added to metformin, glimepiride, or both for the treatment of type 2 diabetes in the United States. Clin Ther. 2010;32(10):1756–67.

    Article  PubMed  Google Scholar 

  27. Beaudet A, Palmer JL, Timlin L, Wilson B, Bruhn D, Boye KS, et al. Cost-utility of exenatide once weekly compared with insulin glargine in patients with type 2 diabetes in the UK. J Med Econ. 2011;14(3):357–66.

    Article  PubMed  Google Scholar 

  28. Goodall G, Costi M, Timlin L, Reviriego J, Sacristán JA, Smith-Palmer J, et al. Cost-effectiveness of exenatide versus insulin glargine in Spanish patients with obesity and type 2 diabetes mellitus. Endocrinologia y Nutricion. 2011;58(7):331–40.

    Article  PubMed  Google Scholar 

  29. Lee WC, Conner C, Hammer M. Cost-effectiveness of liraglutide versus rosiglitazone, both in combination with glimepiride in treatment of type 2 diabetes in the US. Curr Med Res Opin. 2011;27(5):897–906.

    Article  CAS  PubMed  Google Scholar 

  30. Valentine WJ, Palmer AJ, Lammert M, Langer J, Brändle M. Evaluating the long-term cost-effectiveness of liraglutide versus exenatide BID in patients with type 2 diabetes who fail to improve with oral antidiabetic agents. Clin Ther. 2011;33(11):1698–712.

    Article  CAS  PubMed  Google Scholar 

  31. Davies MJ, Chubb BD, Smith IC, Valentine WJ. Cost-utility analysis of liraglutide compared with sulphonylurea or sitagliptin, all as add-on to metformin monotherapy in Type 2 diabetes mellitus. Diabet Med. 2012;29(3):313–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee WC, Samyshkin Y, Langer J, Palmer JL. Long-term clinical and economic outcomes associated with liraglutide versus sitagliptin therapy when added to metformin in the treatment of type 2 diabetes: a CORE diabetes model analysis. J Med Econ. 2012;15(Suppl. 2):28–37.

    Article  CAS  PubMed  Google Scholar 

  33. Samyshkin Y, Guillermin AL, Best JH, Brunell SC, Lloyd A. Long-term cost-utility analysis of exenatide once weekly versus insulin glargine for the treatment of type 2 diabetes patients in the US. J Med Econ. 2012;15(Suppl. 2):6–13.

    Article  PubMed  Google Scholar 

  34. Fonseca T, Clegg J, Caputo G, Norrbacka K, Dilla T, Alvarez M. The cost-effectiveness of exenatide once weekly compared with exenatide twice daily and insulin glargine for the treatment of patients with type two diabetes and body mass index ≥ 30 kg/m2 in Spain. J Med Econ. 2013;16(7):926–38.

    Article  PubMed  Google Scholar 

  35. Raya PM, Pérez A, De Arellano AR, Briones T, Hunt B, Valentine WJ. Incretin therapy for type 2 diabetes in Spain: a cost-effectiveness analysis of liraglutide versus sitagliptin. Diabetes Ther. 2013;4(2):417–30.

    Article  CAS  Google Scholar 

  36. Brown ST, Grima DG, Sauriol L. Cost-effectiveness of insulin glargine versus sitagliptin in insulin-naïve patients with type 2 diabetes mellitus. Clin Ther. 2014;36(11):1576–87.

    Article  CAS  PubMed  Google Scholar 

  37. Huetson P, Palmer JL, Levorsen A, Fournier M, Germe M, McLeod E. Cost-effectiveness of once daily GLP-1 receptor agonist lixisenatide compared to bolus insulin both in combination with basal insulin for the treatment of patients with type 2 diabetes in Norway. J Med Econ. 2015;18(8):573–85.

    Article  PubMed  Google Scholar 

  38. Pérez A, Mezquita Raya P, Ramírez de Arellano A, Briones T, Hunt B, Valentine WJ. Cost-effectiveness analysis of incretin therapy for type 2 diabetes in spain: 1.8 mg liraglutide versus sitagliptin. Diabetes Ther. 2015;6(1):61–74.

  39. Dilla T, Alexiou D, Chatzitheofilou I, Ayyub R, Lowin J, Norrbacka K. The cost-effectiveness of dulaglutide versus liraglutide for the treatment of type 2 diabetes mellitus in Spain in patients with BMI ≥ 30 kg/m2. J Med Econ. 2017;20(5):443–52.

    Article  PubMed  Google Scholar 

  40. Gordon J, McEwan P, Hurst M, Puelles J. The cost-effectiveness of alogliptin versus sulfonylurea as add-on therapy to metformin in patients with uncontrolled type 2 diabetes mellitus. Diabetes Ther. 2016;7(4):825–45.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Roussel R, Martinez L, Vandebrouck T, Douik H, Emiel P, Guery M, et al. Evaluation of the long-Term cost-effectiveness of liraglutide therapy for patients with type 2 diabetes in France. J Med Econ. 2016;19(2):121–34.

    Article  PubMed  Google Scholar 

  42. Hunt B, Glah D, van der Vliet M. Modeling the long-term cost-effectiveness of ideglira in patients with type 2 diabetes who are failing to meet glycemic targets on basal insulin alone in the Netherlands. Diabetes Ther. 2017;8(4):753–65.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hunt B, Kragh N, McConnachie CC, Valentine WJ, Rossi MC, Montagnoli R. Long-term cost-effectiveness of two GLP-1 receptor agonists for the treatment of type 2 diabetes mellitus in the italian setting: liraglutide versus lixisenatide. Clin Ther. 2017;39(7):1347–59.

    Article  CAS  PubMed  Google Scholar 

  44. Hunt B, Mocarski M, Valentine WJ, Langer J. Evaluation of the long-term cost-effectiveness of IDegLira versus liraglutide added to basal insulin for patients with type 2 diabetes failing to achieve glycemic control on basal insulin in the USA. J Med Econ. 2017;20(7):663–70.

    Article  CAS  PubMed  Google Scholar 

  45. Hunt B, Mocarski M, Valentine WJ, Langer J. IDegLira versus insulin glargine U100: a long-term cost-effectiveness analysis in the US setting. Diabetes Ther. 2017;8(3):531–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hunt B, Vega-Hernandez G, Valentine WJ, Kragh N. Evaluation of the long-term cost-effectiveness of liraglutide vs lixisenatide for treatment of type 2 diabetes mellitus in the UK setting. Diabetes Obes Metab. 2017;19(6):842–9.

    Article  CAS  PubMed  Google Scholar 

  47. Hunt B, Ye Q, Valentine WJ, Ashley D. Evaluating the long-term cost-effectiveness of daily administered GLP-1 receptor agonists for the treatment of type 2 diabetes in the united kingdom. Diabetes Ther. 2017;8(1):129–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kvapil M, Prázný M, Holik P, Rychna K, Hunt B. Cost-Effectiveness of IDegLira Versus Insulin Intensification Regimens for the Treatment of Adults with Type 2 Diabetes in the Czech Republic. Diabetes Ther. 2017;8(6):1331–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mezquita-Raya P, Ramírez de Arellano A, Kragh N, Vega-Hernandez G, Pöhlmann J, Valentine WJ, et al. Liraglutide versus lixisenatide: long-term cost-effectiveness of GLP-1 receptor agonist therapy for the treatment of type 2 diabetes in Spain. Diabetes Ther. 2017;8(2):401–15.

  50. Psota M, Psenkova MB, Racekova N, De Arellano AR, Vandebrouck T, Hunt B. Cost-effectiveness analysis of IDegLira versus basal-bolus insulin for patients with type 2 diabetes in the Slovak health system. ClinicoEcon Outcomes Res. 2017;9:749–62.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vega-Hernandez G, Wojcik R, Schlueter M. Cost-Effectiveness of Liraglutide Versus Dapagliflozin for the Treatment of Patients with Type 2 Diabetes Mellitus in the UK. Diabetes Ther. 2017;8(3):513–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Basson M, Ntais D, Ayyub R, Wright D, Lowin J, Chartier F, et al. The cost-effectiveness of dulaglutide 1.5 mg versus exenatide QW for the treatment of patients with type 2 diabetes mellitus in France. Diabetes Ther. 2018;9(1):13–25.

  53. Ishii H, Madin-Warburton M, Strizek A, Thornton-Jones L, Suzuki S. The cost-effectiveness of dulaglutide versus insulin glargine for the treatment of type 2 diabetes mellitus in Japan. J Med Econ. 2018;21(5):488–96.

    Article  PubMed  Google Scholar 

  54. Bruhn D, Martin AA, Tavares R, Hunt B, Pollock RF. Cost-utility of albiglutide versus insulin lispro, insulin glargine, and sitagliptin for the treatment of type 2 diabetes in the US. J Med Econ. 2016;19(7):672–83.

    Article  PubMed  Google Scholar 

  55. Davies MJ, Glah D, Chubb B, Konidaris G, McEwan P. Cost Effectiveness of IDegLira vs. Alternative basal insulin intensification therapies in patients with type 2 diabetes mellitus uncontrolled on basal insulin in a UK setting. PharmacoEconomics. 2016;34(9):953–66.

  56. Bergenheim K, Williams SA, Bergeson JG, Stern L, Sriprasert M. US cost-effectiveness of saxagliptin in type 2 diabetes mellitus. Am J Pharm Benef. 2012;4(1):20–8.

    Google Scholar 

  57. Erhardt W, Bergenheim K, Duprat-Lomon I, McEwan P. Cost effectiveness of saxagliptin and metformin versus sulfonylurea and metformin in the treatment of type 2 diabetes mellitus in Germany: a cardiff diabetes model analysis. Clin Drug Investig. 2012;32(3):189–202.

    Article  CAS  PubMed  Google Scholar 

  58. Granström O, Bergenheim K, McEwan P, Sennfält K, Henriksson M. Cost-effectiveness of saxagliptin (Onglyza®) in type 2 diabetes in Sweden. Prim Care Diabetes. 2012;6(2):127–36.

    Article  PubMed  Google Scholar 

  59. Grzeszczak W, Czupryniak L, Kolasa K, Sciborski C, Lomon ID, McEwan P. The cost-effectiveness of saxagliptin versus NPH insulin when used in combination with other oral antidiabetes agents in the treatment of type 2 diabetes mellitus in Poland. Diabetes Technol Ther. 2012;14(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  60. Elgart JF, Caporale JE, Gonzalez L, Aiello E, Waschbusch M, Gagliardino JJ. Treatment of type 2 diabetes with saxagliptin: a pharmacoeconomic evaluation in Argentina. Health Econ Rev. 2013;3(1):1–9.

    Article  Google Scholar 

  61. Van Haalen HGM, Pompen M, Bergenheim K, McEwan P, Townsend R, Roudaut M. Cost effectiveness of adding dapagliflozin to insulin for the treatment of type 2 diabetes mellitus in the Netherlands. Clin Drug Investig. 2014;34(2):135–46.

    Article  CAS  PubMed  Google Scholar 

  62. Charokopou M, McEwan P, Lister S, Callan L, Bergenheim K, Tolley K, et al. Cost-effectiveness of dapagliflozin versus DPP-4 inhibitors as an add-on to metformin in the treatment of type 2 diabetes mellitus from a UK healthcare system perspective. BMC Health Serv Res. 2015;15:496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Charokopou M, McEwan P, Lister S, Callan L, Bergenheim K, Tolley K, et al. The cost-effectiveness of dapagliflozin versus sulfonylurea as an add-on to metformin in the treatment of Type 2 diabetes mellitus. Diabet Med. 2015;32(7):890–8.

    Article  CAS  PubMed  Google Scholar 

  64. Deng J, Gu S, Shao H, Dong H, Zou D, Shi L. Cost-effectiveness analysis of exenatide twice daily (BID) vs insulin glargine once daily (QD) as add-on therapy in Chinese patients with Type 2 diabetes mellitus inadequately controlled by oral therapies. J Med Econ. 2015;18(11):974–89.

    Article  PubMed  Google Scholar 

  65. Gu S, Deng J, Shi L, Mu Y, Dong H. Cost-effectiveness of saxagliptin vs glimepiride as a second-line therapy added to metformin in Type 2 diabetes in China. J Med Econ. 2015;18(10):808–20.

    Article  PubMed  Google Scholar 

  66. Chuang LH, Verheggen BG, Charokopou M, Gibson D, Grandy S, Kartman B. Cost-effectiveness analysis of exenatide once-weekly versus dulaglutide, liraglutide, and lixisenatide for the treatment of type 2 diabetes mellitus: an analysis from the UK NHS perspective. J Med Econ. 2016;19(12):1127–34.

    Article  CAS  PubMed  Google Scholar 

  67. Gordon J, McEwan P, Sabale U, Kartman B, Wolffenbuttel BHR. The cost-effectiveness of exenatide twice daily (BID) vs insulin lispro three times daily (TID) as add-on therapy to titrated insulin glargine in patients with type 2 diabetes. J Med Econ. 2016;19(12):1167–74.

    Article  CAS  PubMed  Google Scholar 

  68. Gu S, Mu Y, Zhai S, Zeng Y, Zhen X, Dong H. Cost-Effectiveness of dapagliflozin versus acarbose as a monotherapy in type 2 diabetes in China. PLoS One. 2016;11(11):e0165629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gu S, Zeng Y, Yu D, Hu X, Dong H. Cost-Effectiveness of saxagliptin versus acarbose as second-Line therapy in type 2 diabetes in China. PLoS One. 2016;11(11):e0167190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tzanetakos C, Tentolouris N, Kourlaba G, Maniadakis N. Cost-effectiveness of dapagliflozin as add-on to metformin for the treatment of type 2 diabetes mellitus in Greece. Clin Drug Investig. 2016;36(8):649–59.

    Article  PubMed  Google Scholar 

  71. Zhang X, Liu S, Li Y, Wang Y, Tian M, Liu G. Long-term effectiveness and cost-effectiveness of metformin combined with liraglutide or exenatide for type 2 diabetes mellitus based on the CORE diabetes model study. PLoS One. 2016;11(6):e0156393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gu S, Wang X, Qiao Q, Gao W, Wang J, Dong H. Cost-effectiveness of exenatide twice daily vs insulin glargine as add-on therapy to oral antidiabetic agents in patients with type 2 diabetes in China. Diabetes Obes Metab. 2017;19(12):1688–97.

    Article  PubMed  Google Scholar 

  73. Shao H, Zhai S, Zou D, Mir MU, Zawadzki NK, Shi Q, et al. Cost-effectiveness analysis of dapagliflozin versus glimepiride as monotherapy in a Chinese population with type 2 diabetes mellitus. Curr Med Res Opin. 2017;33(2):359–69.

    Article  CAS  PubMed  Google Scholar 

  74. Tzanetakos C, Bargiota A, Kourlaba G, Gourzoulidis G, Maniadakis N. Cost effectiveness of exenatide once weekly versus insulin glargine and liraglutide for the treatment of type 2 diabetes mellitus in Greece. Clin Drug Investig. 2018;38(1):67–77.

    Article  CAS  PubMed  Google Scholar 

  75. Woehl A, Evans M, Tetlow AP, McEwan P. Evaluation of the cost effectiveness of exenatide versus insulin glargine in patients with sub-optimally controlled Type 2 diabetes in the United Kingdom. Cardiovasc Diabetol. 2008;7:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Klarenbach S, Cameron C, Singh S, Ur E. Cost-effectiveness of second-line antihyperglycemic therapy in patients with type 2 diabetes mellitus inadequately controlled on metformin. CMAJ. 2011;183(16):E1213–20.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Gao L, Zhao FL, Li SC. Cost-utility analysis of liraglutide versus glimepiride as add-on to metformin in type 2 diabetes patients in China. Int J Technol Assess Health Care. 2012;28(4):436–44.

    Article  PubMed  Google Scholar 

  78. Viriato D, Calado F, Gruenberger JB, Ong SH, Carvalho D, Silva-Nunes J, et al. Cost-effectiveness of metformin plus vildagliptin compared with metformin plus sulphonylurea for the treatment of patients with type 2 diabetes mellitus: a Portuguese healthcare system perspective. J Med Econ. 2014;17(7):499–507.

    Article  PubMed  Google Scholar 

  79. Kousoulakou H, Hatzikou M, Baroutsou V, Yfantopoulos J. Cost effectiveness of vildagliptin versus glimepiride as add-on treatment to metformin for the treatment of diabetes mellitus type 2 patients in Greece. Cost Effect Resour Alloc. 2017;15(1):19.

    Article  Google Scholar 

  80. Kiadaliri AA, Gerdtham UG, Eliasson B, Carlsson KS. Cost-utility analysis of glucagon-like peptide-1 agonists compared with dipeptidyl peptidase-4 inhibitors or neutral protamine hagedorn basal insulin as add-on to metformin in type 2 diabetes in Sweden. Diabetes Ther. 2014;5(2):591–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Steen Carlsson K, Persson U. Cost-effectiveness of add-on treatments to metformin in a Swedish setting: liraglutide vs sulphonylurea or sitagplitin. J Med Econ. 2014;17(9):658–69.

    Article  PubMed  Google Scholar 

  82. Ericsson Å, Lundqvist A. Cost effectiveness of insulin degludec plus liraglutide (IDegLira) in a fixed combination for uncontrolled type 2 diabetes mellitus in Sweden. Appl Health Econ Health Policy. 2017;15(2):237–48.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ericsson Å, Glah D, Lorenzi M, Jansen JP, Fridhammar A. Cost-effectiveness of liraglutide versus lixisenatide as add-on therapies to basal insulin in type 2 diabetes. PLoS One. 2018;13(2):e0191953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Neslusan C, Teschemaker A, Johansen P, Willis M, Valencia-Mendoza A, Puig A. Cost-effectiveness of canagliflozin versus sitagliptin as add-on to metformin in patients with type 2 diabetes mellitus in Mexico. Value Health Reg Issues. 2015;8:8–19.

    Article  PubMed  Google Scholar 

  85. Sabapathy S, Neslusan C, Yoong K, Teschemaker A, Johansen P, Willis M. Cost-effectiveness of canagliflozin versus sitagliptin when added to metformin and sulfonylurea in type 2 diabetes in Canada. J Popul Ther Clin Pharmacol. 2016;23(2):e151–68.

    PubMed  Google Scholar 

  86. Neslusan C, Teschemaker A, Willis M, Johansen P, Vo L. Cost-effectiveness analysis of canagliflozin 300 mg versus dapagliflozin 10 mg added to metformin in patients with type 2 diabetes in the United States. Diabetes Ther. 2018;9(2):565–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gaebler JA, Soto-Campos G, Alperin P, Cohen M, Blickensderfer A, Wintle M, et al. Health and economic outcomes for exenatide once weekly, insulin, and pioglitazone therapies in the treatment of type 2 diabetes: a simulation analysis. Vasc Health Risk Manag. 2012;8(1):255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schwarz B, Gouveia M, Chen J, Nocea G, Jameson K, Cook J, et al. Cost-effectiveness of sitagliptin-based treatment regimens in European patients with type 2 diabetes and haemoglobin A1c above target on metformin monotherapy. Diabetes Obes Metab. 2008;10(Suppl 1):43–55.

    Article  CAS  PubMed  Google Scholar 

  89. Sinha A, Rajan M, Hoerger T, Pogach L. Costs and consequences associated with newer medications for glycemic control in type 2 diabetes. Diabetes Care. 2010;33(4):695–700.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wang B, Roth JA, Nguyen H, Felber E, Furnback W, Garrison LP. The short-term cost-effectiveness of once-daily liraglutide versus once-weekly exenatide for the treatment of type 2 diabetes mellitus in the United States. PLoS One. 2015;10(4):e0121915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cazarim MDS, da Cruz-Cazarim ELC, Baldoni ADO, dos Santos TBE, de Souza PG, Silva IDA, et al. Cost-effectiveness analysis of different dipeptidyl-peptidase 4 inhibitor drugs for treatment of type 2 diabetes mellitus. Diabetes Metab Syndrome Clin Res Rev. 2017;11:S859–65.

    Article  Google Scholar 

  92. Drummond R, Malkin S, Du Preez M, Lee XY, Hunt B. The management of type 2 diabetes with fixed-ratio combination insulin degludec/liraglutide (IDegLira) versus basal-bolus therapy (insulin glargine U100 plus insulin aspart): a short-term cost-effectiveness analysis in the UK setting. Diabetes Obes Metab. 2018;20(10):2371–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Langer J, Hunt B, Valentine WJ. Evaluating the short-term cost-effectiveness of liraglutide versus sitagliptin in patients with type 2 diabetes failing metformin monotherapy in the United States. J Manag Care Pharm. 2013;19(3):237–46.

    PubMed  Google Scholar 

  94. Ektare VU, Lopez JM, Martin SC, Patel DA, Rupnow MF, Botteman MF. Cost efficiency of canagliflozin versus sitagliptin for type 2 diabetes mellitus. Am J Manag Care. 2014;20(10):S204–15.

    PubMed  Google Scholar 

  95. Hunt B, McConnachie CC, Gamble C, Dang-Tan T. Evaluating the short-term cost-effectiveness of liraglutide versus lixisenatide in patients with type 2 diabetes in the United States. J Med Econ. 2017;20(11):1117–20.

    Article  CAS  PubMed  Google Scholar 

  96. Hunt B, Mocarski M, Valentine WJ, Langer J. Evaluation of the short-term cost-effectiveness of IDegLira versus continued up-titration of insulin glargine U100 in patients with type 2 diabetes in the USA. Adv Ther. 2017;34(4):954–65.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lasalvia P, Baquero L, Otálora-Esteban M, Castañeda-Cardona C, Rosselli D. Cost-effectiveness of dulaglutide compared with liraglutide and glargine in type 2 diabetes mellitus patients in Colombia. Value Health Reg Issues. 2017;14:35–40.

    Article  PubMed  Google Scholar 

  98. Chakravarty A, Rastogi M, Dhankhar P, Bell K, Bell KF. Comparison of costs and outcomes of dapagliflozin with other glucose-lowering therapy classes added to metformin using a short-term cost-effectiveness model in the US setting. J Med Econ. 2018;21(5):497–509.

    Article  PubMed  Google Scholar 

  99. Gourzoulidis G, Tzanetakos C, Ioannidis I, Tsapas A, Kourlaba G, Papageorgiou G, et al. Cost-effectiveness of empagliflozin for the treatment of patients with type 2 diabetes mellitus at increased cardiovascular risk in Greece. Clin Drug Investig. 2018;38(5):417–26.

    Article  CAS  PubMed  Google Scholar 

  100. Nguyen E, Coleman CI, Nair S, Weeda ER. Cost-utility of empagliflozin in patients with type 2 diabetes at high cardiovascular risk. J Diabetes Compl. 2018;32(2):210–5.

    Article  Google Scholar 

  101. Sabale U, Ekman M, Granström O, Bergenheim K, McEwan P. Cost-effectiveness of dapagliflozin (Forxiga®) added to metformin compared with sulfonylurea added to metformin in type 2 diabetes in the Nordic countries. Prim Care Diabetes. 2015;9(1):39–47.

    Article  PubMed  Google Scholar 

  102. Teramachi H, Ohta H, Tachi T, Toyoshima M, Mizui T, Goto C, et al. Pharmacoeconomic analysis of DPP-4 inhibitors. Pharmazie. 2013;68(11):909–15.

    CAS  PubMed  Google Scholar 

  103. DeKoven M, Lee WC, Bouchard J, Massoudi M, Langer J. Real-world cost-effectiveness: lower cost of treating patients to glycemic goal with liraglutide versus exenatide. Adv Ther. 2014;31(2):202–16.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Thornberry NA, Gallwitz B. Mechanism of action of inhibitors of dipeptidyl-peptidase-4 (DPP-4). Best Pract Res Clin Endocrinol Metab. 2009;23(4):479–86.

    Article  CAS  PubMed  Google Scholar 

  105. Kalra S, Baruah MP, Sahay RK, Unnikrishnan AG, Uppal S, Adetunji O. Glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes: past, present, and future. Indian J Endocrinol Metab. 2016;20(2):254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kalra S. Sodium glucose co-transporter-2 (SGLT2) inhibitors: a review of their basic and clinical pharmacology. Diabetes Ther. 2014;5(2):355–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW. Methods for the economic evaluation of health care programmes. Oxford: Oxford University Press; 2015.

    Google Scholar 

  108. Eddy DM, Hollingworth W, Caro JJ, Tsevat J, McDonald KM, Wong JB. Model transparency and validation: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-7. Med Decis Making. 2012;32(5):733–43.

    Article  PubMed  Google Scholar 

  109. Palmer AJ, Roze S, Valentine WJ, Minshall ME, Foos V, Lurati FM, et al. Validation of the CORE Diabetes Model against epidemiological and clinical studies. Curr Med Res Opin. 2004;20(Suppl 1):S27–40.

    Article  PubMed  Google Scholar 

  110. Hayes AJ, Leal J, Gray AM, Holman RR, Clarke PM. UKPDS Outcomes Model 2: a new version of a model to simulate lifetime health outcomes of patients with type 2 diabetes mellitus using data from the 30 year United Kingdom Prospective Diabetes Study: UKPDS 82. Diabetologia. 2013;56(9):1925–33.

    Article  CAS  PubMed  Google Scholar 

  111. Zhao Y, Campbell CR, Fonseca V, Shi L. Impact of hypoglycemia associated with antihyperglycemic medications on vascular risks in veterans with type 2 diabetes. Diabetes Care. 2012;35(5):1126–32.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Shi L, Shao H, Zhao Y, Thomas NA. Is hypoglycemia fear independently associated with health-related quality of life? Health Qual Life Outcomes. 2014;12:167.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Heine RJ, Van Gaal LF, Johns D, Mihm MJ, Widel MH, Brodows RG. Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med. 2005;143(8):559–69.

    Article  CAS  PubMed  Google Scholar 

  114. Palmer AJ, Si L, Tew M, Hua X, Willis MS, Asseburg C, et al. Computer modeling of diabetes and its transparency: a report on the eighth mount hood challenge. Value Health. 2018;21(6):724–31.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Claxton K, Sculpher M, McCabe C, Briggs A, Akehurst R, Buxton M, et al. Probabilistic sensitivity analysis for NICE technology assessment: not an optional extra. Health Econ. 2005;14(4):339–47.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Lizheng Shi and Dongzhe Hong formulated the study question. Dongzhe Hong also drafted the data abstraction form and the project proposal, and developed the search strategies for study selection; all other authors reviewed and revised the search strategies and the study materials. Dongzhe Hong and Minghuan Jiang screened the titles and abstracts, and extracted articles for full-text review. Hui Shao, Yingnan Zhao, Yan Li, and Lizheng Shi performed the critical appraisal of the studies. Dongzhe Hong, Lei Si, Minghuan Jiang, and Wai-kit Ming abstracted data from the selected articles, and Dongzhe Hong conducted the data synthesis. Dongzhe Hong also drafted the Methods and Introduction sections of the manuscript, and Lei Si drafted the Introduction, Discussion, and Conclusions sections. All authors reviewed and revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizheng Shi.

Ethics declarations

Funding

This research received no specific grants from any funding agency in the public, commercial, or not-for-profit sectors.

Conflicts of Interest

Lei Si is a recipient of the National Health and Medical Research Council Early Career Fellowship (GNT1139826). Yan Li was partly supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health under Award Number R01HL141427. Dongzhe Hong, Minghuan Jiang, Hui Shao, Wai-kit Ming, Yingnan Zhao, and Lizheng Shi have no conflicts of interest to declare.

Additional information

Dongzhe Hong and Lei Si contribution as the first co-authors.

Minghuan Jiang and Hui Shao as the second co-authors.

Appendices

Appendix 1: Details of the search strategies for the identification of studies

(1) (GLP-1) AND (cost effectiveness OR cost utility OR economics OR value OR cost).

(2) (exenatide OR Byetta OR Bydureon OR liraglutide OR Victoza OR Saxenda OR lixisenatide OR Lyxumia OR albiglutide OR Tanzeum OR dulaglutide OR trulicity OR emaglutide OR Ozempic) AND (cost effectiveness OR cost utility OR economics OR value OR cost).

(3) (DPP-4) AND (cost effectiveness OR cost utility OR economics OR value OR cost).

(4) (Sitagliptin OR Januvia OR Vildagliptin OR Galvus OR Saxagliptin OR Onglyza OR Linagliptin OR Tradjenta OR Gemigliptin OR Zemiglo OR Anagliptin OR Suiny OR Teneligliptin OR Tenelia OR Alogliptin OR Nesina OR Vipidia OR Trelagliptin OR Zafatek OR Omarigliptin OR MK-3102 OR Evogliptin OR Suganon OR Gosogliptin OR SatRx) AND (cost effectiveness OR cost utility OR economics OR value OR cost).

(5) (SGLT2) AND (cost effectiveness OR cost utility OR economics OR value OR cost).

(6) (Dapagliflozin OR Farxiga OR Empagliflozin OR Jardiance OR Canagliflozin OR Invokana OR Ipragliflozin OR ASP-1941 OR Suglat OR Tofogliflozin OR Apleway OR Deberza OR Ertugliflozin OR Steglatro) AND (cost effectiveness OR cost utility OR economics OR value OR cost).

Appendix 2: Summary of sensitivity analyses in the included studies

References

Comparison

Probabilistic sensitivity analysis (Y/N)

Cost-effectiveness acceptability curve (Y/N)

Sensitive factors 1

Sensitive factors 2

Sensitive factors 3

Sensitive factors 4

Sensitive factors 5

Ray et al., 2007 [20]

Exenatide vs. insulin

N

Y

Exenatide price

HbA1c change

Insulin dose

Time horizon

 

Shaya et al., 2007 [21]

Exenatide vs. placebo; exenatide vs. no additional treatment

N

N

HbA1c change

Discount rate

   

Minshall et al., 2008 [22]

Exenatide vs. no additional treatment beyond metformin and/or a sulfonylurea

Y

Y

Time horizon

HbA1c change

BMI change

Lipid change

 

Schwarz et al., 2008 [88]

Sitagliptin vs. rosiglitazone; sitagliptin vs. sulfonylurea

N

N

Lipid change

SBP change

Congestive heart failure risk

Sitagliptin efficacy

SBP change

Woehl et al., 2008 [75]

Exenatide vs. insulin glargine in three scenarios

N

N

Hypoglycemic events

Coefficient of durability of sitagliptin

   

Brandle et al., 2009 [23]

Exenatide vs. insulin glargine

Y

Y

Time horizon

Discount rate

Cost of exenatide

Complication costs

 

Mittendorf et al., 2009 [24]

Exenatide vs. insulin glargine

Y

Y

Baseline BMI

Baseline HbA1c

Time horizon

HbA1c effect sustainability

 

Sullivan et al., 2009 [25]

Liraglutide vs. rosiglitazone

N

N

HbA1c change

    

Lee et al., 2010 [26]

Liraglutide vs. exenatide

N

N

Discount rate

Time horizon

HbA1c reduction

Disutility for BMI

 

Sinha et al., 2010 [89]

Exenatide vs. sitagliptin; Sitagliptin vs. glyburide

N

N

Disutility for injectable medication

Disutility for injectable medication, and cost of medication

Utility for weight change

Third-line therapy change

 

Beaudet et al., 2011 [27]

Exenatide vs. insulin glargine

Y

Y

Time horizon

Cost of complications

Discount rate

Exenatide price

 

Goodall et al., 2011 [28]

Exenatide vs. insulin glargine

Y

Y

Time horizon

HbA1c effect sustainability

Discount rate

HbA1c reduction

 

Klarenbach et al., 2011 [76]

DPP-4 vs. no additional treatment

N

Y

Clinical effects of HbA1c, weight, hypoglycemia

Treatment intensification

Price of DPP-4 inhibitors

Cost of complications

 

Lee et al., 2011 [29]

liraglutide vs. rosiglitazone

N

N

Discount rate

Time horizon

HbA1c reduction

(Dis)utility for BMI change

 

Valentine et al., 2011 [30]

Liraglutide vs. exenatide

N

Y

Time horizon

Discount rate

HbA1c and minor hypoglycemia benefits only

HbA1c reduction

 

Bergenheim et al., 2012 [56]

Saxagliptin vs. sulfonylurea

Y

N

Cost and disutility for weight gain and hypoglycemic event

Cost and disutility for hypoglycemic event

HbA1c effect sustainability, cost and disutility for hypoglycemic event

HbA1c effect sustainability, cost and disutility for weight gain and hypoglycemic event

 

Davies et al., 2012 [31]

Liraglutide vs. glimepiride; liraglutide vs. sitagliptin

N

Y

Treatment duration

Discount rate

Weight gain

BMI disutility

 

Erhardt et al., 2012 [57]

Saxagliptin vs. sulfonylurea

Y

Y

Model entry on second-line treatment

Weight change

BMI disutility

Discount rate

 

Gaebler et al., 2012 [87]

Exenatide vs. insulin

N

N

Time horizon

    

Gao et al., 2012 [77]

Liraglutide vs. glimepiride

N

N

Time horizon

Discount rate

Complication costs

Initial utility score: use UKPDS utilities

 

Granstrōm et al., 2012 [58]

Saxagliptin vs. sulfonylurea;

Y

Y

Hypoglycemia rates

Cost of hypoglycemia

BMI disutility

Sustainability of weight change

 

Grzeszczak et al., 2012 [59]

Saxagliptin vs. insulin

Y

Y

Model entry on second-line treatment

Baseline HbA1c

Weight change

Discount rate

 

Lee et al., 2012 [32]

Liraglutide vs. sitagliptin

Y

Y

Time horizon

    

Samyshkin et al., 2012 [33]

Exenatide vs. insulin glargine

Y

N

Time horizon

HbA1c reduction

BMI change

Convenience of less frequent administration of exenatide

 

Elgart et al., 2013 [60]

Saxagliptin vs. sulfonylureas

Y

Y

HbA1c values

age

Cost values

Utility values

 

Fonseca et al., 2013 [34]

Exenatide once weekly vs. exenatide twice daily; exenatide once weekly vs. insulin glargine

Y

Y

Time horizon

95% upper CI for HbA1c

(Dis)utility for BMI/nausea

  

Langer et al., 2013 [93]

Liraglutide vs. sitagliptin

Y

N

Discount rate

    

Raya et al., 2013 [35]

Liraglutide vs. sitagliptin

N

Y

Time horizon

Discount rates

Over- or underestimating the unit costs of diabetes complications

  

Teramachi et al., 2013 [102]

Sitagliptin 100 mg vs. sitagliptin 50 mg; vildagliptin vs. sitagliptin; alogliptin vs. sitagliptin

N

N

The standard deviation of HbA1c

Price of each drug

   

Brown et al., 2014 [36]

Sitagliptin vs. insulin glargine

Y

Y

Changes to the number of testing strips

    

DeKoven et al., 2014 [103]

Liraglutide vs. exenatide

N

N

     

Ektare et al., 2014 [94]

Canagliflozin vs. sitagliptin

Y

N

Drug costs

Treatment discontinuations

BMI

LDL-c

Discount rates

Kiadaliri et al., 2014 [80]

GLP-1 vs. DPP-4; GLP-1 vs. NPH insulin; DPP-4 vs. NPH insulin

Y

N

Drug costs

Treatment discontinuations

BMI

LDL-c

HbA1c reduction

Steen Carlsson et al., 2014 [81]

Liraglutide vs. sulfonylurea; liraglutide vs. sitagliptin

Y

Y

Frequency of hypoglycemia

Baseline BMI

HbA1c at which the second-line treatment was initiated

 

Cost of glucose monitoring strips

Van Haalen et al., 2014 [61]

Dapagliflozin vs. placebo

Y

Y

Uncertainty around the QALY point estimate

Price of test strips

   

Viriato et al., 2014 [78]

Vildagliptin vs. sulfonylurea

Y

Y

Coefficient of treatment failure

Drug costs

HbA1c

Discount rates

Risk of congestive heart failure

Charokopou et al., 2015 [62]

Dapagliflozin vs. DPP-4

Y

Y

HbA1c change from baseline

Weight change from baseline

BMI utility values

Total non-drug costs

Risk of congestive heart failure

Charokopou et al., 2015 [63]

Dapagliflozin vs. sulfonylurea

Y

Y

Change in HbA1c from baseline

Change in weight from baseline

Disutility for minor hypoglycemia

  

Deng et al., 2015 [64]

Exenatide vs. insulin glargine

Y

Y

HbA1c level at baseline

Health utilities decrement

BMI at baseline

Disutility for minor hypoglycemia

 

Gu et al., 2015 [65]

Saxagliptin vs. glimepiride

Y

Y

Utility

HbA1c

BMI

Age

Disutility for minor hypoglycemia

Huetson et al., 2015 [37]

Lixisenatide vs. basal-bolus insulin

Y

N

Discount rates

Reductions in HbA1c

Application of code-2 disutility for excess BMI

 

Disutility for minor hypoglycemia

Neslusan et al., 2015 [84]

Canagliflozin vs. sitagliptin

N

Y

QALY gains for canagliflozin

Time horizon

Disutility for overweight/obesity

Disutility for minor hypoglycemia

 

Pérez et al., 2015 [38]

Liraglutide vs. sitagliptin

N

N

Time horizon

Disutility for minor hypoglycemia

   

Sabale et al., 2015 [101]

Dapagliflozin vs. sulfonylurea

Y

Y

Assumptions on body weight progression over time

Utility weights associated with this change

   

Wang et al., 2015 [90]

Liraglutide vs. exenatide

Y

Y

the cost of liraglutide and exenatide

the liraglutide and exenatide AE rates

the cost of treating gastrointestinal AEs

the effectiveness of liraglutide and exenatide in patients who completed the full treatment duration

 

Bruhn et al., 2016 [54]

Albiglutide vs. insulin lispro; albiglutide vs. sitagliptin

Y

Y

Time horizon

Discount rate

Complication costs

Us ethnic breakdown

hypoglycemia disutility

Chuang et al., 2016 [66]

Exenatide vs. dulaglutide; exenatide vs. liraglutide; exenatide vs. lixisenatide

Y

Y

HbA1c reduction

Weight loss

Treatment discontinuation due to AE

Nausea as an AE

 

Davies et al., 2016 [55]

IDegLira vs. basal insulin + liraglutide; IDegLira vs. insulin glargine + IAsp; IDegLira vs. uptitrated insulin glargine

Y

Y

Alternative time horizon

Alternative discount rate

Alternative treatment switching

Alternative BMI progression

Hypoglycemia disutility

Gordon et al., 2016 [40]

Metformin + alogliptin vs. metformin + sulfonylurea

Y

Y

Time horizon

Costs

Utility

Discount rate

Age at model entry

Gordon et al., 2016 [67]

Exenatide vs. lispro

Y

Y

Time horizon

Discount rate

Complication utility

Complication costs

 

Gu et al., 2016 [68]

Dapagliflozin vs. acarbose

Y

Y

Utility

Age

HbA1c

Ethnicity

 

Gu et al., 2016 [69]

Saxagliptin vs. acarbose

Y

Y

Utility

Age

HbA1c

Ethnicity

 

Permsuwan et al., 2016 [17]

Saxagliptin vs. metformin; sitagliptin vs. metformin; vildagliptin vs. metformin; saxagliptin vs. sulfonylurea; sitagliptin vs. sulfonylurea; vildagliptin vssulfonylurea

Y

Y

HbA1c change of DPP-4 inhibitors

Discount rate

Risk of severe hypoglycemia of DPP-4 inhibitors

Cost of sexagliptin

HbA1c reduction

Roussel et al., 2016 [41]

Liraglutide vs. sitagliptin; liraglutide vs. glimepiride

Y

Y

Time horizon

Discount rate

Alternative costs of complications

HbA1c difference

Rule of treatment intensification

Sabapathy et al., 2016 [85]

Canagliflozin vs. sitagliptin

Y

Y

Discount rate

Time horizon

eGFR drift

Alternative treatment

thresholds

Insulin dose

Tzanetakos et al., 2016 [70]

Dapagliflozin vs. sulfonylurea; dapagliflozin vs. DPP-4

Y

Y

the assumptions around the HbA1c switching threshold

the utility weights applied to BMI progression

utilities t2 dm complications

Discount rate

Insulin dose

Zhang et al., 2016 [71]

Liraglutide vs. exenatide

Y

Y

Discount rates

Simulated treatment period

   

Cazarim et al., 2017 [91]

Linagliptin vs. none; linagliptin + metformin vs. none; sitagliptin vs. none; sitagliptin + metformin vs. none; vildagliptin vs. none; vildagliptin + metformin vs. none; saxagliptin vs. none

N

N

NA

    

Dilla et al., 2017 [39]

dulaglutide vs. liraglutide

Y

Y

Treatment effects

Treatment duration

Economics

Disutility exclusions

Discount rate

Ericsson et al., 2017 [82]

IDegLira vs. insulin glargine; IDegLira vs. NPH insulin; IDegLira vs. insulin aspart + insulin glargine; IDegLira vs. insulin aspart + NPH insulin; IDegLira vs. liraglutide + insulin glargine; IDegLira vs. liraglutide + NPH insulin

Y

Y

Absolute treatment effect on the HbA1c level

Annual absolute drift of the HbA1c level, HbA1c

Initial absolute treatment effects on other biomarker levels

Absolute drift of the other biomarker levels

 

Gu et al., 2017 [72]

Exenatide vs. insulin glargine

Y

N

HbA1c threshold value for therapy

BMI-associated disutility

BMI-related prescription costs

Incidence, costs and disutility of the AEs

 

Hunt et al., 2017 [42]

Exenatide vs. insulin glargine

Y

Y

Time horizon

Upper and lower limits of HbA1c change

HbA1c progression

BMI progression

 

Hunt et al., 2017 [43]

Liraglutide vs. lixisenatide

Y

Y

Time horizon

Discount rates

HbA1c difference

Blood pressure difference

Lipid difference

Hunt et al., 2017 [95]

Liraglutide vs. lixisenatide

N

N

NA

    

Hunt et al., 2017 [44]

IDegLira vs. liraglutide

Y

N

No influential parameters identified could influence base-case results

    

Hunt et al., 2017 [45]

IDegLira vs. insulin glargine

Y

N

Time horizon

HbA1c difference abolished

Cost of neutral protamine Hagedorn

  

Hunt et al., 2017 [96]

IDegLira vs. insulin glargine

N

N

NA

    

Hunt et al., 2017 [46]

Liraglutide vs. lixisenatide

Y

N

Time horizon

HbA1c difference abolished

   

Hunt et al., 2017 [47]

Liraglutide vs. exenatide; liraglutide vs. lixisenatide

N

N

No influential parameters identified could influence the base-case results

    

Kousoulakou et al., 2017 [79]

Vildagliptin vs. glimepiride

N

N

No influential parameters identified could influence the base-case results

    

Kvapil et al., 2017 [48]

IDegLira vs. basal insulin

N

N

No influential parameters identified could influence the base-case results

    

Lasalvia et al., 2017 [97]

Dulaglutide vs. liraglutide; dulaglutide vs. glargine

Y

N

Non-daily injection utility

Monthly dulaglutide cost

Percentage of patients achieving < 7% HbA1c with glargine

Glucometries per month

Blood pressure

Mezquita-Raya et al., 2017 [49]

Liraglutide vs. lixisenatide

Y

Y

HbA1c difference abolished

Blood pressure

   

Psota et al., 2017 [50]

IDegLira vs. basal bolus

Y

Y

No influential parameters identified could influence the base-case results

Blood pressure

   

Shao et al., 2017 [73]

Dapagliflozin vs. glimepiride

Y

Y

No influential parameters identified could influence the base-case results

    

Vega-Hernandez et al., 2017 [51]

Liraglutide (dual therapy) vs. dapagliflozin (dual therapy); liraglutide (triple therapy) vs. dapagliflozin (triple therapy)

Y

Y

Treatment switch year

Time horizon

   

Basson et al., 2018 [52]

Dulaglutide vs. exenatide

Y

Y

No influential parameters identified could influence the base-case results

    

Chakravarty et al., 2018 [98]

Dapagliflozin vs. DPP-4; dapagliflozin vs. GLP-1

Y

Y

No influential parameters identified could influence the base-case results

    

Drummond et al., 2018 [92]

IDegLira vs. basal-bolus

N

N

NA

    

Ericsson et al., 2018 [83]

Liraglutide vs. lixisenatide

Y

Y

Between-treatment difference in HbA1c abolished

    

Gourzoulidis et al., 2018 [99]

Empagliflozin vs. standard of care (background glucose-lowering therapy)

Y

Y

Time horizon

    

Ishii et al., 2018 [53]

Dulaglutide vs. insulin glargine

Y

Y

No influential parameters identified could influence the base-case results

    

Neslusan et al., 2018 [86]

Canagliflozin vs. dapagliflozin

Y

Y

No influential parameters identified could influence the base-case results

    

Nguyen et al., 2018 [100]

Empagliflozin vs. standard treatment

Y

N

Cost of empagliflozin

Death rate of standard treatment

   

Tzanetakos et al., 2018 [74]

Exenatide vs. insulin glargine; exenatide vs. liraglutide

Y

Y

No influential parameters identified could influence the base-case results

    
  1. HbA1c hemoglobin A1c, BMI body mass index, eGFR estimated glomerular filtration rate, SBP systolic blood pressure, CI confidence interval, Y yes, N no, DPP-4 dipeptidyl peptidase-4, GLP-1 glucagon-like peptide-1, UKPDS UK Prospective Diabetes Study, QALY quality-adjusted life-year, LDL-c low-density lipoprotein-cholesterol, AE adverse event, NA not available

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, D., Si, L., Jiang, M. et al. Cost Effectiveness of Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors, Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists, and Dipeptidyl Peptidase-4 (DPP-4) Inhibitors: A Systematic Review. PharmacoEconomics 37, 777–818 (2019). https://doi.org/10.1007/s40273-019-00774-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40273-019-00774-9

Navigation