Log in

Integrated Computational Design of Three-Phase Mo–Si–B Alloy Turbine Blade for High-Temperature Aerospace Applications

  • Technical Article
  • Published:
Integrating Materials and Manufacturing Innovation Aims and scope Submit manuscript

Abstract

The efficiencies of jet turbine engines are limited in part by the high-temperature properties of Ni-based superalloys utilized within turbine blades. Although Mo–Si–B alloys exhibit promising high-temperature properties, traditional materials development approaches relying extensively upon costly trial-and-error experiments inhibit the adoption rate of new materials. The present research seeks to address this problem by develo** and demonstrating a computational materials design framework for the design of Mo-Si-B alloys for gas turbine blade applications. The developed framework utilizes: (1) finite element simulations of 280 random microstructure instantiations to predict microstructure- and temperature-dependent yield strength and fracture toughness and their uncertainties; (2) analytical models to predict stresses due to turbine blade rotation; and (3) the inductive design exploration method (IDEM) to determine robust feasible domains of input and intermediate design variables. IDEM considers three input design variables (i.e., operating temperatures of 1273 K and 1473 K, volume fraction of the Molybdenum solid solution phase 0.45 ≤ vMoSS ≤ 0.75, and volume fraction of T2 intermetallic phase 0.125 ≤ vT2 ≤ 0.275) and three intermediate design variables (i.e., yield strength, fracture toughness, and density). Results indicate a maximum feasible temperature of approximately 1295 K at vMoSS and vT2 of approximately 0.45 and 0.18, respectively. This work is significant in that it demonstrates the design of Mo-Si-B alloys for high-temperature blades for aerospace applications, thus providing a means to increase efficiencies and reduce greenhouse gas emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

a:

Crack size

A15:

Mo3Si intermetallic phase

F :

Deformation gradient tensor

F e :

Elastic part of the deformation gradient tensor

F P :

Plastic part of the deformation gradient tensor

P :

Rate of plastic part of the deformation gradient tensor

FKIc :

Scalar stress intensity factor fitness value

FSC :

Stress concentration factor

FSy :

Scalar yield strength fitness value

G :

Shear modulus

k :

Boltzmann constant

k dyn :

Dynamic recovery of immobile dislocations constant

k mul :

Dislocation multiplication rate constant

K c :

Fracture toughness

K I :

Stress intensity factor

K Ic :

Critical stress intensity factor

\(\hat{K}_{Ic}\) :

Surrogate model critical fracture toughness

L P :

Plastic velocity gradient tensor

MoSS :

Molybdenum solid solution phase

N P :

Direction of plastic flow tensor

p :

Activation enthalpy fitting parameter

q :

Activation enthalpy fitting parameter

q ρ :

Dislocation barrier strength

r :

T-head-to-blade radius

r 1 :

Root radius

r 2 :

Tip radius

R c :

Critical capture radius

S :

Deviatoric stress tensor

S 0 :

Athermal slip resistance threshold

S a :

Athermal slip resistance

\(S_{t}\) :

Thermal slip resistance

\(S_{y}\) :

Yield strength

\(\hat{S}_{y}\) :

Surrogate model yield strength

T2:

Mo5SiB2 intermetallic phase

\(T\) :

Absolute temperature

v MoSS :

Volume fraction of MoSS

v A15 :

Volume fraction of A15

v T2 :

Volume fraction of T2

Mo–Si–B:

Molybdenum–silicon–boron alloys

w 1 :

Width of blade

w 2 :

Width of T-head

α :

Statistical significance level

β :

Dislocation trap** constant

\( \dot{\bar{ \epsilon }}^{p} \) :

Equivalent plastic strain rate

\( \dot{\bar{ \epsilon }}_{0} ^{p} \) :

Reference strain rate

\(\Delta F_{g}\) :

Activation energy for dislocation glide

\(\lambda\) :

Effective mean free path of dislocations

\(\rho_{d}\) :

Total dislocation density

\(\rho_{M}\) :

Mobile dislocation density

\(\dot{\rho }_{M}\) :

Rate of change of mobile dislocation density

\(\rho_{I}\) :

Immobile dislocation density

\(\dot{\rho }_{I}\) :

Rate of change of immobile dislocation density

ρ:

Mass density

ρMoSS :

Mass density of MoSS

ρT2 :

Mass density of T2

π :

Ratio of diameter to circumference of a circle

σ :

Nominal stress

σ c :

Critical principal stress required for smeared cracking

ω :

Angular velocity

References

  1. Heilmaier M et al (2009) Metallic materials for structural applications beyond nickel-based superalloys. JOM 61(7):61–67. https://doi.org/10.1007/s11837-009-0106-7

    Article  CAS  Google Scholar 

  2. Jéhanno P, Böning M, Kestler H, Heilmaier M, Saage H, Krüger M (2008) Molybdenum alloys for high temperature applications in air. Powder Metall 51(2):99–102

    Article  Google Scholar 

  3. Lemberg JA, Ritchie RO (2012) Mo-Si-B alloys for ultrahigh-temperature structural applications. Adv Mater 24(26):3445–3480

    Article  CAS  Google Scholar 

  4. Mitra R (2006) Mechanical behaviour and oxidation resistance of structural silicides. Int Mater Rev 51(1):13–64

    Article  CAS  Google Scholar 

  5. Wurster S et al (2013) Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials. J Nuclear Mater 442(1):S181–S189. https://doi.org/10.1016/j.jnucmat.2013.02.074

    Article  CAS  Google Scholar 

  6. Perepezko JH (2009) The hotter the engine, the better. Science 326(5956):1068–1069. https://doi.org/10.1126/science.1179327

    Article  CAS  Google Scholar 

  7. Bugała P (2017) Review of design of high-pressure turbine. J Kones 24(1):67–76. https://doi.org/10.5604/01.3001.0010.2796

    Article  Google Scholar 

  8. Brunner M et al (2010) Creep properties beyond 1100°C and microstructure of Co–Re–Cr alloys. Mater Sci Eng, A 528(2):650–656. https://doi.org/10.1016/j.msea.2010.09.035

    Article  CAS  Google Scholar 

  9. Eylon D, Fujishiro S, Postans PJ, Froes FH (1984) High-temperature titanium alloys—a review. JOM 36(11):55–62. https://doi.org/10.1007/BF03338617

    Article  CAS  Google Scholar 

  10. Middlemas MR, Cochran JK (2010) The microstructural engineering of Mo-Si-B alloys produced by reaction synthesis. JOM 62(10):20–24

    Article  CAS  Google Scholar 

  11. Worthing AG (1925) The temperature scale and the melting point of molybdenum. Phys Rev 25(6):846–857. https://doi.org/10.1103/PhysRev.25.846

    Article  CAS  Google Scholar 

  12. Paradis P-F, Ishikawa T, Yoda S (2002) Noncontact measurements of thermophysical properties of molybdenum at high temperatures. Int J Thermophys 23(2):555–569. https://doi.org/10.1023/A:1015169721771

    Article  CAS  Google Scholar 

  13. Sakidja R, Perepezko JH, Kim S, Sekido N (2008) Phase stability and structural defects in high-temperature Mo–Si–B alloys. Acta Mater 56(18):5223–5244

    Article  CAS  Google Scholar 

  14. Li R et al (2019) Variation of phase composition of Mo-Si-B alloys induced by boron and their mechanical properties and oxidation resistance. Mater Sci Eng, A 749:196–209. https://doi.org/10.1016/j.msea.2019.02.008

    Article  CAS  Google Scholar 

  15. Akinc M, Meyer MK, Kramer MJ, Thom AJ, Huebsch JJ, Cook B (1999) Boron-doped molybdenum silicides for structural applications. Mater Sci Eng, A 261(1):16–23. https://doi.org/10.1016/S0921-5093(98)01045-4

    Article  Google Scholar 

  16. Jain P, Kumar KS (2010) Dissolved Si in Mo and its effects on the properties of Mo–Si–B alloys. Scripta Mater 62(1):1–4

    Article  CAS  Google Scholar 

  17. Sturm D, Heilmaier M, Schneibel JH, Jéhanno P, Skrotzki B, Saage H (2007) The influence of silicon on the strength and fracture toughness of molybdenum. Mater Sci Eng, A 463(1–2):107–114

    Article  Google Scholar 

  18. Zhang L, Pan K, Lin J (2013) Fracture toughness and fracture mechanisms in Mo5SiB2 at ambient to elevated temperatures. Intermetallics 38:49–54

    Article  Google Scholar 

  19. Krüger M et al (2008) Mechanically alloyed Mo–Si–B alloys with a continuous α-Mo matrix and improved mechanical properties. Intermetallics 16(7):933–941

    Article  Google Scholar 

  20. Middlemas MR, Cochran JK (2008) Dense, fine-grain Mo-Si-B alloys from nitride-based reactions. JOM 60(7):19–24

    Article  CAS  Google Scholar 

  21. Chollacoop N, Alur AP, Kumar KS (2007) Microstructural simulation of three-point bending test with Mo-Si-B alloy at high temperature: sources of strain field localization. J Solid Mech Mater Eng 1(8):998–1004

    Article  Google Scholar 

  22. Biragoni PG, Heilmaier M (2007) FEM-simulation of real and artificial microstructures of Mo-Si-B Alloys for elastic properties and comparison with analytical methods. Adv Eng Mater 9(10):882–887

    Article  Google Scholar 

  23. Patra A, Priddy MW, McDowell DL (2015) Modeling the effects of microstructure on the tensile properties and micro-fracture behavior of Mo–Si–B alloys at elevated temperatures. Intermetallics 64:6–17. https://doi.org/10.1016/j.intermet.2015.04.008

    Article  CAS  Google Scholar 

  24. Brindley KA, Priddy MW, Neu RW (2019) Integrative materials design of three-phase Mo-Si-B alloys. Integr Mater Manuf Innov 8(1):1–16. https://doi.org/10.1007/s40192-019-0124-4

    Article  Google Scholar 

  25. Brindley KA, Neu RW (2019) Crystal viscoplasticity model of molybdenum including the influence of silicon in solid solution. Mater Perform Char 8(1):272–287

    Google Scholar 

  26. McDowell DL, Panchal J, Choi H-J, Seepersad C, Allen J, Mistree F (2009) Integrated design of multiscale, multifunctional materials and products. Butterworth-Heinemann, Burlington

    Google Scholar 

  27. Olson GB (1997) Computational design of hierarchically structured materials. Science 277(5330):1237–1242. https://doi.org/10.1126/science.277.5330.1237

    Article  CAS  Google Scholar 

  28. Ellis BD, McDowell DL (2017) Application-specific computational materials design via multiscale modeling and the inductive design exploration method (IDEM). Integr Mater Manuf Innov 6(1):9–35. https://doi.org/10.1007/s40192-017-0086-3

    Article  Google Scholar 

  29. Kiureghian AD, Ditlevsen O (2009) Aleatory or epistemic? Does it matter? Struct Saf 31(2):105–112. https://doi.org/10.1016/j.strusafe.2008.06.020

    Article  Google Scholar 

  30. Whelan G, McDowell DL (2019) Uncertainty quantification in ICME workflows for fatigue critical computational modeling. Eng Fract Mech 220:106673. https://doi.org/10.1016/j.engfracmech.2019.106673

    Article  Google Scholar 

  31. Choi HJ, Allen JK, Rosen D, McDowell DL, Mistree F (2005) An inductive design exploration method for the integrated design of multi-scale materials and products. In: International design engineering technical conferences and computers and information in engineering conference, vol 4739, pp 859–870. https://doi.org/10.1115/DETC2005-85335

  32. Choi H-J, Mcdowell DL, Allen JK, Mistree F (2008) An inductive design exploration method for hierarchical systems design under uncertainty. Eng Optim 40(4):287–307

    Article  Google Scholar 

  33. Middlemas MR (2009) Fabrication, strength and oxidation of molybdenum-silicon-boron alloys from reaction synthesis. Georgia Institute of Technology, Atlanta

    Google Scholar 

  34. Trelis. American Fork (UT): csimsoft, 2018.

  35. Bažant ZP, Lin F-B (1988) Nonlocal smeared cracking model for concrete fracture. J Struct Eng 114(11):2493–2510. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:11(2493)

    Article  Google Scholar 

  36. Pokharel R, Patra A, Brown DW, Clausen B, Vogel SC, Gray GT (2019) An analysis of phase stresses in additively manufactured 304L stainless steel using neutron diffraction measurements and crystal plasticity finite element simulations. Int J Plast 121:201–217. https://doi.org/10.1016/j.ijplas.2019.06.005

    Article  CAS  Google Scholar 

  37. Thool K, Patra A, Fullwood D, Krishna KVM, Srivastava D, Samajdar I (2020) The role of crystallographic orientations on heterogeneous deformation in a zirconium alloy: a combined experimental and modeling study. Int J Plast 133:102785. https://doi.org/10.1016/j.ijplas.2020.102785

    Article  CAS  Google Scholar 

  38. Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip. In: Progress in materials science, vol 19, p 1

  39. Weber G, Anand L (1990) Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comput Methods Appl Mech Eng 79(2):173–202. https://doi.org/10.1016/0045-7825(90)90131-5

    Article  Google Scholar 

  40. Kruzic JJ, Schneibel JH, Ritchie RO (2005) Ambient- to elevated-temperature fracture and fatigue properties of Mo-Si-B alloys: role of microstructure. Metall Mater Trans A 36(9):2393–2402. https://doi.org/10.1007/s11661-005-0112-5

    Article  Google Scholar 

  41. Choe H, Chen D, Schneibel JH, Ritchie RO (2001) Ambient to high temperature fracture toughness and fatigue-crack propagation behavior in a Mo–12Si–8.5B (at.%) intermetallic. Intermetallics 9(4):319–329

    Article  CAS  Google Scholar 

  42. Kumar S, Alur AP (2006) Crack growth behavior in a two-phase Mo-Si-B alloy. Mater Res Soc Symp Proc 980:601. https://doi.org/10.1557/PROC-980-0980-II06-01

  43. Lemberg JA, Middlemas MR, Weingärtner T, Gludovatz B, Cochran JK, Ritchie RO (2012) On the fracture toughness of fine-grained Mo-3Si-1B (wt.%) alloys at ambient to elevated (1300°C) temperatures. Intermetallics 20(1):141–154

    Article  CAS  Google Scholar 

  44. Gaston D, Newman C, Hansen G, Lebrun-Grandié D (2009) MOOSE: a parallel computational framework for coupled systems of nonlinear equations. Nucl Eng Des 239(10):1768–1778. https://doi.org/10.1016/j.nucengdes.2009.05.021

    Article  CAS  Google Scholar 

  45. Zhou J, Gokhale AM, Gurumurthy A, Bhat SP (2015) Realistic microstructural RVE-based simulations of stress–strain behavior of a dual-phase steel having high martensite volume fraction. Mater Sci Eng, A 630:107–115. https://doi.org/10.1016/j.msea.2015.02.017

    Article  CAS  Google Scholar 

  46. Hashizume H, Miya K, Seki M, Ioki K (1987) Thermomechanical behavior of the first wall subjected to plasma disruption. Fusion Eng Des 5(2):141–154. https://doi.org/10.1016/S0920-3796(87)90057-3

    Article  CAS  Google Scholar 

  47. Tietz TE, Wilson JW (1965) Behavior and properties of refractory metals. Stanford University Press, Stanford

    Google Scholar 

  48. HMSM Mazarbhuiya and KM Pandey (2017) Steady state structural analysis of high pressure gas turbine blade using finite element analysis. IOP Conference Ser: Mater Sci Eng 225:012113. https://doi.org/10.1088/1757-899X/225/1/012113

  49. Pilkey WD (1997) Peterson’s stress concentration factors, 2nd edn. Wiley, New York

    Book  Google Scholar 

  50. Jain P, Kumar KS (2010) Tensile creep of Mo–Si–B alloys. Acta Mater 58(6):2124–2142

    Article  CAS  Google Scholar 

  51. Anderson TL (2005) Fracture mechanics: fundamentals and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  52. LLC Minitab, Minitab Statistical Software. 2019

Download references

Acknowledgements

AP would like to acknowledge funding received from Industrial Research and Consultancy Centre, IIT Bombay, under the seed grant project RD/0517-IRCCSH0-036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Patra.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Appendix A

Constitutive model parameters are given in Tables 1, 2, 3.

Table 1 Temperature-dependent elastic constants for MoSS, A15 and T2 phases [22]
Table 2 Model parameters for MoSS
Table 3 Critical principal stress required for smeared cracking based on calibration to experimental data. Note that a single value was used for all temperatures

Appendix B

Effect of Simulation Domain Size on the Material’s Response

We performed simulations to verify that simulation size domain does not affect material’s response. For these simulations, we used vMoSS = 0.45 and instantiated two microstructures for each of the following simulation domains: 25 μm × 25 μm, 40 μm × 40 μm, and 60 μm × 60 μm. All other simulation conditions are the same as in Sect. 2.2.3. The material was loaded in tension at a strain rate of 10−4 s−1 at 1273 K. Figure 17 shows the stress–strain response for these six microstructures. It can be seen that there is no noticeable simulation domain size effect among these six responses and the variability in response may be attributed to the stochasticity of the microstructure. We have used a simulation domain of 40 μm × 40 μm in the actual tension test simulations to reduce computation times.

Fig. 17
figure 17

Simulated stress–strain response for different two randomly instantiated microstructures of different simulation domain sizes. The legend indicates the simulation domain size (in μm) and the corresponding microstructure instantiation number

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellis, B.D., Haider, H., Priddy, M.W. et al. Integrated Computational Design of Three-Phase Mo–Si–B Alloy Turbine Blade for High-Temperature Aerospace Applications. Integr Mater Manuf Innov 10, 245–264 (2021). https://doi.org/10.1007/s40192-021-00207-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40192-021-00207-6

Keywords

Navigation