Log in

Chronoamperometric response of electrochemical reaction diffusion system: a new theoretical and numerical investigation for EC2 scheme

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

This paper introduces a novel mathematical model for chronoamperometric analysis of electrochemical reactions in the EC2 scheme. Utilizing the homotopy perturbation method, we address the highly nonlinear reaction–diffusion equations, even under non-steady state conditions. We offer an approximate analytical expression for species O and R concentrations, along with sensitivity analysis on diffusion and kinetic parameters. Results under steady state conditions validate our model against prior findings. Additionally, we provide a numerical solution using Matlab and Maple software, demonstrating satisfactory agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

\(A\) :

Electrode surface area

\(a_{k}^{\infty }\) :

Coefficient of the series

\(c_{O} (r,t)\) :

Concentration of species \(O\)

\(c_{R} (x,t)\) :

Concentration of species \(R\)

\(c^{o}\) :

Initial/ bulk concentration of species \(O\)

\(D_{O}\) :

Diffusion coefficient of species \(O\)

\(D_{R}\) :

Diffusion coefficient of species \(R\)

\(D\) :

Common diffusion coefficient of species \(O\) and \(R.\)

\(x\) :

Distance from electrode surface

\(\tau\) :

Dimensionless time

\(i\) :

Current (A)

N:

Number of electrons

F:

Faraday constant, charge on one mole of electrons

\(I\) :

Dimensional Faradaic CA current

\(R\) :

Gas constant

\(t\) :

Time

\(T\) :

Absolute temperature

\(\psi\) :

Dimensionless current

\(s\) :

Laplace variable

erfc (.):

Complementary error function

\(k\) :

Rate constant of reaction

\(\Theta\) :

Parameter

References

  1. A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications (Wiley, New York, 1980)

    Google Scholar 

  2. R.G. Compton, C.E. Banks, Understanding voltammetry (World Scientific, Hoboken, 2018)

    Book  Google Scholar 

  3. A. Molina, J. González, Pulse voltammetry in physical electrochemistry and electroanalysis (Springer International Publishing, Berlin, 2016)

    Book  Google Scholar 

  4. A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications (John Wiley, Hoboken, 2001), p.2

    Google Scholar 

  5. J.M. Savéant, Elements of molecular and biomolecular electrochemistry: an electrochemical approach to electron transfer chemistry (John Wiley, Hoboken, 2006), p.2

    Book  Google Scholar 

  6. R.G. Compton, C.E. Banks, Understanding voltammetry, 2nd edn. (Imperial College Press, London, 2011)

    Book  Google Scholar 

  7. V. Thangavel, A. Mastouri, C. Guéry, M. Morcrette, A.A. Franco, Understanding the reaction steps involving polysulfides in 1 M LiTFSI in TEGDME DOL using cyclic voltammetry experiments and modelling. Batteries Supercaps 4, 1 (2020)

    Google Scholar 

  8. N. Loew, T. Ofuji, I. Shitanda, Y. Hoshi, Y. Kitazumi, K. Kano, M. Itagaki, Cyclic voltammetry and electrochemical impedance simulations of the mediator-type enzyme electrode reaction using finite element method. Electrochim. Acta (2020). https://doi.org/10.1016/j.electacta.2020.137483

    Article  Google Scholar 

  9. R. Usha Rani, L. Rajendran, M. Abukhaled, Theoretical analysis of homogeneous catalysis of electrochemical reactions: steady-state current–potential. React. Kinet. Mech. Catal. 136, 1229–1242 (2023). https://doi.org/10.1007/s11144-023-02407-x

    Article  CAS  Google Scholar 

  10. L.K. Bieniasz, Theory and highly accurate computation of non-limiting chronoamperometric currents for the ErevCirr reaction mechanism at cylindrical wire electrodes. J. Electroanalytical. Chem. 895, 115410 (2021)

    Article  CAS  Google Scholar 

  11. B. Manimegalai, L. Rajendran, Cyclic voltammetric response of homogeneous catalysis of electrochemical reaction. part 3: A theoretical and numerical approach for one-electron two-step reaction scheme. J. Electroanalytical. Chem. 922, 116706 (2022)

    Article  CAS  Google Scholar 

  12. R.J. Salomi, S.V. Sylvia, L. Rajendran, M.E.G. Lyons, Transient current, sensitivity and resistance of biosensors acting in a trigger mode: Theoretical study. J. Electroanalytical. Chem. 895, 115421 (2021)

    Article  CAS  Google Scholar 

  13. L.K. Bieniasza, S. McKee, M. Vynnycky, A reaction–diffusion system arising from electrochemistry. J. Computational. Appl. Math. 423, 114961 (2023)

    Article  Google Scholar 

  14. Á. Molina, F. Martínez-Ortiz, E. Laborda, Rigorous analytical solution for EC mechanism in normal pulse voltammetry at spherical electrodes and microelectrodes. Int. J. Electrochem. Sci. 4, 1395–1406 (2009)

    Article  CAS  Google Scholar 

  15. A. Eswari, L. Rajendran, Mathematical modeling of cyclic voltammetry for EC2 reaction. Russ. J. Electrochem. 47(2), 191–199 (2011)

    Article  CAS  Google Scholar 

  16. L.K. Bieniasz, M. Vynnycky, S. McKee, Integral equation-based simulation of transient experiments for an EC2 mechanism: beyond the steady state simplification. Electrochim. Acta 428, 140896 (2022). https://doi.org/10.1016/j.electacta.2022.140896

    Article  CAS  Google Scholar 

  17. D. Britz, Digital simulation in electrochemistry (Springer, Berlin, 2005), p.666. https://doi.org/10.1007/b97996

    Book  Google Scholar 

  18. L.K. Bieniasz, Theory and highly accurate computation of nonlimiting chronoamperometric currents for the ErevCirr reaction mechanism at cylindrical wire electrodes. J. Electroanal. Chem. 895, 115410 (2021)

    Article  CAS  Google Scholar 

  19. D.M.H. Kern, The polarographic oxidation potential of ascorbic acid. J. Amer. Chem. Soc. 76, 1011–1015 (1954)

    Article  CAS  Google Scholar 

  20. L. Marcoux, T.J.P. O’Brien, Potential-dependent chronoamperometry: the EC reaction. J. Phys. Chem. 76, 1666–1668 (1972)

    Article  CAS  Google Scholar 

  21. H.Y. Cheng, R.L. McCreery, Simultaneous determination of reversible potential and rate constant for a first-order EC reaction by potential dependent chronoamperometry. Anal. Chem. 50, 645–648 (1978)

    Article  CAS  Google Scholar 

  22. M.H. Kim, Analysis of the first-order EC process by direct current and derivative polarography. Anal. Chem. 59, 2136–2144 (1987)

    Article  CAS  Google Scholar 

  23. R. Usha Rani, L. Rajendran, Taylor’s series method for solving the nonlinear reaction-diffusion equation in the electroactive polymer film. Chem. Phys. Lett. 754, 137573 (2020). https://doi.org/10.1016/j.cplett.2020.137573

    Article  CAS  Google Scholar 

  24. S. Vinolyn Sylvia, R. Joy Salomi, L. Rajendran, M. Abukhaled, Poisson-Boltzmann equation and electrostatic potential around macroions in colloidal plasmas: taylor series approach. Solid State Technol. 63, 10090–10106 (2020)

    Google Scholar 

  25. S. Vinolyn Sylvia, R. Joy Salomi, L. Rajendran, M, Abukhaled, Solving nonlinear reaction–diffusion problem in electrostatic interaction with reaction-generated pH change on the kinetics of immobilized enzyme systems using Taylor series method. J. Math. Chem. (2021). https://doi.org/10.1007/s10910-021-01241-7

    Article  Google Scholar 

  26. K. Nirmala, B. Manimegalai, L. Rajendran, Steady-state substrate and product concentrations for non Michaelis-Menten kinetics in an amperometric biosensor–hyperbolic function and Padé approximants method. Int. J. Electrochem. Sci. 15, 5682–5697 (2020). https://doi.org/10.20964/2020.06.09

    Article  CAS  Google Scholar 

  27. A.M. Wazwaz, Optical bright and dark soliton solutions for coupled nonlinear Schrödinger (CNLS) equations by the variational iteration method. Optik 207, 164457 (2020). https://doi.org/10.1016/j.ijleo.2020.164457

    Article  Google Scholar 

  28. A.M. Wazwaz, Solving systems of fourth-order Emden-fowler type equations by the variational iteration method. Chem. Eng. Commun. 203(8), 1081–1092 (2016). https://doi.org/10.1080/00986445.2016.1141094

    Article  CAS  Google Scholar 

  29. R. Joy Salomi, S. Vinolyn Sylvia, L. Rajendran, M. Abukhaled, Electric potential and surface oxygen ion density for planar, spherical and cylindrical metal oxide grains. Sens. Actuators B. Chem. 321, 128576 (2020). https://doi.org/10.1016/j.snb.2020.128576

    Article  CAS  Google Scholar 

  30. K. Saranya, V. Mohan, L. Rajendran, Steady–state concentrations of carbon dioxide absorbed into phenyl glycidyl ether solutions by residual method. J. Math. Chem. 58, 1230–1246 (2020). https://doi.org/10.1007/s10910-020-01127-0

    Article  CAS  Google Scholar 

  31. M. Abukhaled, S.A. Khuri, A fast convergent semi-analytic method for an electrohydrodynamic flow in a circular cylindrical conduit. Int. J. Appl. Math. Comput. Sci. 7, 1–15 (2021). https://doi.org/10.1007/s40819-021-00974-y

    Article  Google Scholar 

  32. M. Abukhaled, Green’s function iterative approach for solving strongly nonlinear oscillators. J. Comput. Nonlinear Dyn. 12, 051021 (2017). https://doi.org/10.1115/1.4036813

    Article  Google Scholar 

  33. M. Abukhaled, S.A. Khuri, A semi-analytical solution of amperometric enzymatic reactions based on Green’s functions and fixed point iterative schemes. J. Electroanal. Chem. 792, 66–71 (2017). https://doi.org/10.1016/j.jelechem.2017.03.015

    Article  CAS  Google Scholar 

  34. J. Visuvasam, A. Meena, L. Rajendran, New analytical method for solving nonlinear equation in rotating disk electrodes for second-order ECE reactions. J. Electroanal. Chem. 869, 114106 (2020). https://doi.org/10.1016/j.jelechem.2020.114106

    Article  CAS  Google Scholar 

  35. M.E.G. Lyons, Transport and kinetics at carbon nanotube Redox enzyme composite modified electrode biosensors Part 2. redox enzyme dispersed in nanotube mesh of finite thickness. Int. J. Electrochem. Sci. 4, 1196–1236 (2009)

    Article  CAS  Google Scholar 

  36. R. Rach, J.S. Duan, A.M. Wazwaz, Simulation of large deflections of a flexible cantilever beam fabricated from functionally graded materials by the Adomian decomposition method. Int. J. Dyn. Syst. Differ. Equ. 10(4), 287 (2020). https://doi.org/10.1504/IJDSDE.2020.109104

    Article  Google Scholar 

  37. R. Rach, J.S. Duan, A.M. Wazwaz, Solution of higher-order, multipoint, nonlinear boundary value problems with higher-order Robin-type boundary conditions by the Adomian decomposition method. Appl Math Inf Sci 10, 1231–1242 (2016). https://doi.org/10.18576/AMIS/100403

    Article  Google Scholar 

  38. M.E.G. Lyons, Transport and kinetics in electrocatalytic thin film biosensors: bounded diffusion with non-Michaelis-Menten reaction kinetics. J. Solid State Electrochem. 24, 2751–2761 (2020)

    Article  CAS  Google Scholar 

  39. B. Manimegalai, M.E.G. Lyons, L. Rajendran, A kinetic model for amperometric immobilized enzymes at planar, cylindrical and spherical electrodes: The AkbariGanji method. J. Electroanal. Chem. 880, 114921 (2021). https://doi.org/10.1016/j.jelechem.2020.114921

    Article  CAS  Google Scholar 

  40. M.E.G. Lyons, Understanding the kinetics of catalysed reactions in microheterogeneous thin film electrodes. J. Electroanal. Chem. 872, 114278 (2020). https://doi.org/10.1016/j.jelechem.2020.114278

    Article  CAS  Google Scholar 

  41. J.H. He, Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178(3–4), 257–262 (1999). https://doi.org/10.1016/S0045-7825(99)00018-3

    Article  Google Scholar 

  42. J.-H. He, A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Internat. J. Non-Linear Mech. 35(1), 37–43 (2000). https://doi.org/10.1016/S0020-7462(98)00085-7

    Article  Google Scholar 

  43. L. Rajendran, R. Swaminathan, K. Venugopal, M. Rasi, M. Abukhaled, Analytical expressions for the concentration and current in the reduction of hydrogen peroxide at a metal-dispersed conducting polymer film. Quim. Nova 43, 58–65 (2020). https://doi.org/10.21577/0100-4042.20170454

    Article  CAS  Google Scholar 

  44. M. Ali, N. Anjum, Q.T. Ain, J.H. He, Homotopy perturbation method for the attachment oscillator arising in nanotechnology. Fibers. Polym. (2021). https://doi.org/10.1007/s12221-021-0844-x

    Article  Google Scholar 

  45. J.H. He, Y.O. El-Dib, Homotopy perturbation method with three expansions. J. Math. Chem. 59(4), 1139–1150 (2021). https://doi.org/10.1007/s10910-021-01237-3

    Article  CAS  Google Scholar 

  46. N. Anjum, J.H. He, Q.T. Ain, D. Tian, Li-He modified homotopy perturbation method for doubly-clamped electrically actuated microbeams-based microelectromechanical system. Facta. Universitatis: Mech. Eng. (2021). https://doi.org/10.22190/FUME210112025A

    Article  Google Scholar 

  47. J.H. He, Y.O. El-Dib, The enhanced homotopy perturbation method for axial vibration of strings. Facta. Universitatis: Mech. Eng. (2021). https://doi.org/10.22190/FUME210125033H

    Article  Google Scholar 

  48. S. Vinolyn Sylvia, R. Joy Salomi, M.E.G. Lyons, L. Rajendran, Transient current of catalytic processes at chemically modified electrodes. Int. J. Electrochem. Sci. 16, 1–18 (2021). https://doi.org/10.20964/2021.04.36

    Article  CAS  Google Scholar 

  49. R. Swaminathan, K. Lakshmi Narayanan, V. Mohan, K. Saranya, L. Rajendran, Reaction/diffusion equation with Michaelis-Menten kinetics in microdisk biosensor: homotopyperturbation method approach. Int. J. Electrochem. Sci. 14, 3777–3791 (2019). https://doi.org/10.20964/2019.04.13

    Article  CAS  Google Scholar 

  50. O.M. Kirthiga, L. Rajendran, Approximate analytical solution for non-linear reaction diffusion equations in a mono-enzymatic biosensor involving Michaelis-Menten kinetics. J. Electroanal. Chem. 751, 119–127 (2015). https://doi.org/10.1016/j.jelechem.2015.05.036

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Eswari.

Appendix 1

Appendix 1

Matlab program for the numerical solution of nonlinear differential Eqs. (1220)

figure a

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eswari, A., kumar, S.S. Chronoamperometric response of electrochemical reaction diffusion system: a new theoretical and numerical investigation for EC2 scheme. J IRAN CHEM SOC (2024). https://doi.org/10.1007/s13738-024-03063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13738-024-03063-1

Keywords

Navigation