Log in

Polytropic Coefficient Function for Tonks-Langmuir-Type Bounded Plasmas with Kappa-Distributed Electrons and Cold Ion Source

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In the fluid description of the classical Tonks-Langmuir (TL) model [Tonks and Langmuir, Phys Rev., 34: 876, 1929], arises the “closure problem.” The continuity and the momentum equations need, in addition, a closure equation. Usually, this closure equation assumes zero ion pressure (pi = 0), or a constant ion polytropic coefficient (γi). These simplified assumptions are likely to produce incorrect results, because (i) the ions have a non-zero temperature, even if the ion source is assumed to be cold, and (ii) the polytropic coefficient is, in fact, a function of space (or potential), and is far from constant (Kuhn et al., AIP Conference Proceedings, 1306: 216, 2010). Here, the concept of polytropic coefficient function (PCF) is applied to a TL-type discharge with a Kappa-distributed ion source. The ion density and temperature are calculated numerically, for different values of the spectral index κ. The polytropic coefficient function is then calculated using the relation γ = 1 + (n/T) (dT/dn). Striking deviation from results of the classical case are observed. It is shown here that, for Kappa-distributed ion sources, the ion PCF is not a constant, but is a function of the potential. Moreover, the sheath-edge potential differs significantly from the classical case. It is concluded that in order to close the set of fluid equations in an appropriate manner, better approximations to the PCF are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.C. Stangeby. The Plasma Boundary of Fusion Devices (Institute of Physics Publishing, Bristol, 2000)

    Book  Google Scholar 

  2. J. Wesson. Tokamaks (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  3. M. Ariola, A. Pironti. Magnetic Control of Tokamak Plasmas (Springer, Berlin, 2016)

    Book  MATH  Google Scholar 

  4. M.A. Lieberman, A. Lichtenberg. Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994)

    Google Scholar 

  5. F.F. Chen, J.P. Chang. Lecture Notes on Principles of Plasma Processing (Springer, Berlin, 2012)

    Google Scholar 

  6. I.H. Hutchinson. Principles of Plasma Diagnostics (Cambridge University Press, Cambridge, 2002)

    Book  Google Scholar 

  7. L. Tonks, I. Langmuir, A general theory of the plasma of an arc. Phys Rev. 34, 876 (1929)

    Article  ADS  Google Scholar 

  8. E.R. Harrison, W. B. Thompson, The low pressure plane symmetric discharge. Proc. Phys. Soc. London. 74, 145 (1959)

    Article  ADS  Google Scholar 

  9. A. Caruso, A. Cavaliere, The structure of the collisionless plasma-sheath transition. Nuovo Cimento. 26, 145 (1962)

    Article  MATH  Google Scholar 

  10. S.A. Self, Asymptotic plasma and sheath representations for low-pressure discharges. J. Appl. Phys. 36, 456 (1965)

    Article  ADS  Google Scholar 

  11. L.C. Woods, Density waves in low-pressure plasma columns. J. Fluid Mech. 23, 315 (1965)

    Article  ADS  Google Scholar 

  12. G.S. Kino, E.K. Shaw, Two-dimensional low-pressure discharge theory. Phys. Fluids. 9, 587 (1966)

    Article  ADS  Google Scholar 

  13. K.-U. Riemann, J. Seebacher, D.D. Sr Tskhakaya, S. Kuhn, The low pressure plane symmetric discharge. Plasma Phys. Control. Fusion. 47, 1949 (2005)

    Article  ADS  Google Scholar 

  14. K.-U. Riemann, Plasma-sheath transition in the kinetic Tonks-Langmuir model. Phys. Plasmas. 13, 063508 (2006)

    Article  ADS  Google Scholar 

  15. P.C. Stangeby, J.E. Allen, Plasma boundary as a Mach surface. J. Phys A. 3, 304 (1970)

    Article  ADS  MATH  Google Scholar 

  16. K.-U. Riemann, The Bohm criterion and sheath formation. J. Phys. D. 24, 493 (1991)

    Article  ADS  Google Scholar 

  17. S. Kuhn, K.-U. Riemann, N. Jelic, D.D. Sr Tskhakaya, D. Jr. Tskhakaya, M. Stanojevic, Link between fluid and kinetic parameters near the plasma boundary. Phys. Plasmas. 13, 013503 (2006)

    Article  ADS  Google Scholar 

  18. S. Kuhn, M. Kamran, N. Jelic, L. Kos, D. Jr Tskhakaya, D.D. Sr Tskhakaya, Closure of the hierarchy of fluid equations by means of the polytropic coefficient function (PCF). In: AIP conference proceedings, vol. 1306, pp. 216 (2010)

  19. K.-U. Riemann, Polytropic coefficient γ in the fluid simulation of the plasma-sheath transition. In: 28th ICPIG, pp. 479 (2007)

  20. N. Jelic, K.-U. Riemann, T. Gyergyek, S. Kuhn, M. Stanojevic, J. Duhovnik, Fluid and kinetic parameters near the plasma-sheath boundary for finite Debye lengths. Phys. Plasmas. 14, 103506 (2007)

    Article  ADS  Google Scholar 

  21. L. Kos, N. Jelic, S. Kuhn, J. Duhovnik, Extension of the Bissell-Johnson plasma-sheath model for application to fusion-relevant and general plasmas. Phys. Plasmas. 16, 093503 (2009)

    Article  ADS  Google Scholar 

  22. B. Lin, N. **ang, J. Ou, The ion polytropic coefficient in a collisionless sheath containing hot ions. Phys. Plasmas. 23, 083508 (2016)

    Article  ADS  Google Scholar 

  23. F. **ao, Modelling energetic particles by a relativistic kappa-loss-cone distribution function in plasmas. Plasma Phys. Control. Fusion. 48, 203 (2006)

    Article  ADS  Google Scholar 

  24. T.K. Baluku, M.A. Hellberg, Dust acoustic solitons in plasmas with kappa-distributed electrons and/or ions. Phys. Plasmas. 15, 123705 (2008)

    Article  ADS  Google Scholar 

  25. Z. Liu, J. Du, Dust acoustic instability driven by drifting ions and electrons in the dust plasma with Lorentzian kappa distribution. Phys. Plasmas. 16, 123707 (2009)

    Article  ADS  Google Scholar 

  26. D. Bara, M. Djebli, D.B. Doumaz, Combined effects of electronic trap** and non-thermal electrons on the expansion of laser produced plasma into vacuum. Laser and Particle Beams. 32, 391 (2014)

    Article  ADS  Google Scholar 

  27. J. Razzaq, Q. Haque, M. Khan, A. M. Bhatti, M. Kamran, A. M. Mirza, Nonlinear structure formation in ion-temperature-gradient driven drift waves in pair-ion plasma with nonthermal electron distribution. Phys Plasmas. 25(02), 2018 (2119)

    Google Scholar 

  28. M. Kamran, S. Kuhn, D.D. Sr. Tskhakaya, M. Khan, Extended Tonks-Langmuir-type model with non-Boltzmann-distributed electrons and cold ion sources. J. Plasma Phys. 79, 169 (2013)

    Article  ADS  Google Scholar 

  29. T.K. Baluku, M.A. Hellberg, I. Kourakis, N.S. Saini, Dust ion acoustic solitons in a plasma with kappa-distributed electrons. Phys Plasmas. 17, 053702 (2010)

    Article  ADS  Google Scholar 

  30. E.D. Micheli, A fast algorithm for the inversion of Abel’s transform. Appl. Math. Comput. 301, 12 (2017)

    MathSciNet  MATH  Google Scholar 

  31. M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions (Dover, 1970)

Download references

Acknowledgments

The authors thank Dr. D. Tskhakaya for his valuable suggestions.

Funding

This study is supported and provided by the Higher Education Commission (HEC), Pakistan, under project no. 7632/Federal/NRPU/R&D/HEC/2017 and by the National Magnetic Confinement Fusion Program under Grant no. 2013GB104004 and Fundamental Research Fund for Chinese Central Universities. It is also supported and provided by HEC, Pakistan, under project no. 7659/Balochistan/NRPU/R&D/HEC/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kamran.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Majid Khan and S. S. Hussain are equally contributed

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Hussain, S.S., Sheng, Z. et al. Polytropic Coefficient Function for Tonks-Langmuir-Type Bounded Plasmas with Kappa-Distributed Electrons and Cold Ion Source. Braz J Phys 49, 372–378 (2019). https://doi.org/10.1007/s13538-019-00659-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-019-00659-4

Keywords

Navigation