Log in

Inhibition of thioredoxin-1 enhances the toxicity of glycolysis inhibitor 2-deoxyglucose by downregulating SLC1A5 expression in colorectal cancer cells

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Targeting glycolysis in cancer is an attractive approach for therapeutic intervention. 2-Deoxyglucose (2DG) is a synthetic glucose analog that inhibits glycolysis. However, its efficacy is limited by the systemic toxicity at high doses. Understanding the mechanism of 2DG resistance is important for further use of this drug in cancer treatment.

Methods

The expression of thioredoxin-1 (Trx-1) in colorectal cancer (CRC) cells treated with 2DG was detected by Western blotting. The effect of Trx-1 on the cytotoxicity of 2DG in CRC cells was examined in vitro and in vivo. The molecular mechanism involved in Trx-1-mediated activation of the SLC1A5 gene promoter activity was elucidated using in vitro models.

Results

Inhibition glycolysis with 2DG increased the expression of Trx-1 in CRC cells. Overexpression of Trx-1 decreased the cytotoxicity of 2DG, whereas knockdown of Trx-1 by shRNA significantly increased the cytotoxicity of 2DG in CRC cells. The Trx-1 inhibitor PX-12 increased the cytotoxicity of 2DG on CRC cells both in vitro and in vivo. In addition, Trx-1 promoted SLC1A5 expression by increasing the promoter activity of the SLC1A5 gene by binding to SP1. We also found that the SLC1A5 expression was upregulated in CRC tissues, and inhibition of SLC1A5 significantly enhanced the inhibitory effect of 2DG on the growth of CRC cells in vitro and in vivo. Overexpression of SLC1A5 reduced the cytotoxicity of 2DG in combination with PX-12 treatment in CRC cells.

Conclusion

Our results demonstrate a novel adaptive mechanism of glycolytic inhibition in which Trx-1 increases GSH levels by regulating SLC1A5 to rescue cytotoxicity induced by 2DG in CRC cells. Inhibition of glycolysis in combination with inhibition of Trx-1 or SLC1A5 may be a promising strategy for the treatment of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets analysed during the current research are available from the corresponding author on reasonable request.

References

  1. I. Soerjomataram, J. Lortet-Tieulent, D.M. Parkin, J. Ferlay, C. Mathers, D. Forman, F. Bray, Global burden of cancer in 2008: a systematic analysis of disability-adjusted life-years in 12 world regions. Lancet 380, 1840–1850 (2012). https://doi.org/10.1016/s0140-6736(12)60919-2

    Article  PubMed  Google Scholar 

  2. L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019). https://doi.org/10.3322/caac.21551

    Article  PubMed  Google Scholar 

  3. D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011). https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  4. S. Ganapathy-Kanniappan, J.F.H. Geschwind, Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol. Cancer 12, 152 (2013). https://doi.org/10.1186/1476-4598-12-152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S. Dey, N. Murmu, T. Mondal, I. Saha, S. Chatterjee, R. Manna, S. Haldar, S.K. Dash, T.R. Sarkar, B. Giri, Multifaceted entrancing role of glucose and its analogue, 2-deoxy-D-glucose in cancer cell proliferation, inflammation, and virus infection. Biomed. Pharmacother. 156, 113801 (2022). https://doi.org/10.1016/j.biopha.2022.113801

    Article  CAS  PubMed  Google Scholar 

  6. Y. Guan, W. Yao, H. Yu, Y. Feng, Y. Zhao, X. Zhan, Y. Wang, Chronic stress promotes colorectal cancer progression by enhancing glycolysis through beta2-AR/CREB1 signal pathway. Int. J. Biol. Sci. 19, 2006–2019 (2023). https://doi.org/10.7150/ijbs.79583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. T. MaruYama, H. Miyazaki, Y.J. Lim, J. Gu, M. Ishikawa, T. Yoshida, W. Chen, Y. Owada, H. Shibata, Pyrolyzed deketene curcumin controls regulatory T cell generation and gastric cancer metabolism cooperate with 2-deoxy-d-glucose. Front. Immunol. 14, 1049713 (2023). https://doi.org/10.3389/fimmu.2023.1049713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. Sivasubramanian, C.H. Chu, Y. Hsia, N.T. Chen, M.T. Cai, L.S. Tew, Y.C. Chuang, C.T. Chen, B. Aydogan, L.D. Liao, L.W. Lo, Illuminating and radiosensitizing tumors with 2DG-bound gold-based nanomedicine for targeted CT imaging and therapy. Nanomaterials (Basel) 13, 1790 (2023). https://doi.org/10.3390/nano13111790

    Article  CAS  PubMed  Google Scholar 

  9. F. Lu, D. Fang, S. Li, Z. Zhong, X. Jiang, Q. Qi, Y. Liu, W. Zhang, X. Xu, Y. Liu, W. Zhu, L. Jiang, Thioredoxin 1 supports colorectal cancer cell survival and promotes migration and invasion under glucose deprivation through interaction with G6PD. Int. J. Biol. Sci. 18, 5539–5553 (2022). https://doi.org/10.7150/ijbs.71809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. S. Yang, J. Zhao, X. Cui, Q. Zhan, K. Yi, Q. Wang, M. **ao, Y. Tan, B. Hong, C. Fang, C. Kang, TCA-phospholipid-glycolysis targeted triple therapy effectively suppresses ATP production and tumor growth in glioblastoma. Theranostics 12, 7032–7050 (2022). https://doi.org/10.7150/thno.74197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. S. Lampaki, G. Lazaridis, K. Zarogoulidis, I. Kioumis, A. Papaiwannou, K. Tsirgogianni, A. Karavergou, T. Tsiouda, V. Karavasilis, L. Yarmus, K. Darwiche, L. Freitag, A. Sakkas, A. Kantzeli, S. Baka, W. Hohenforst-Schmidt, P. Zarogoulidis, Defining the role of tyrosine kinase inhibitors in early stage non-small cell lung cancer. J. Cancer 6, 568–574 (2015). https://doi.org/10.7150/jca.11893

    Article  PubMed  PubMed Central  Google Scholar 

  12. C. Laussel, S. Leon, Cellular toxicity of the metabolic inhibitor 2-deoxyglucose and associated resistance mechanisms. Biochem. Pharmacol. 182, 114213 (2020). https://doi.org/10.1016/j.bcp.2020.114213

    Article  CAS  PubMed  Google Scholar 

  13. F. Lin, P. Zhang, Z. Zuo, F. Wang, R. Bi, W. Shang, A. Wu, J. Ye, S. Li, X. Sun, J. Wu, L. Jiang, Thioredoxin-1 promotes colorectal cancer invasion and metastasis through crosstalk with S100P. Cancer Lett. 401, 1–10 (2017). https://doi.org/10.1016/j.canlet.2017.04.036

    Article  CAS  PubMed  Google Scholar 

  14. W. Shang, Z. **e, F. Lu, D. Fang, T. Tang, R. Bi, L. Chen, L. Jiang, Jiang, increased Thioredoxin-1 expression promotes cancer progression and predicts poor prognosis in patients with gastric cancer. Oxid. Med. Cell. Longev. 2019, 9291683 (2019). https://doi.org/10.1155/2019/9291683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. S.J. Welsh, W.T. Bellamy, M.M. Briehl, G. Powis, The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res. 62, 5089–5095 (2002)

    CAS  PubMed  Google Scholar 

  16. J. Muri, H. Thut, Q. Feng, M. Kopf, Thioredoxin-1 distinctly promotes NF-kappaB target DNA binding and NLRP3 inflammasome activation independently of Txnip. Elife 9, e53627 (2020). https://doi.org/10.7554/eLife.53627

    Article  PubMed  PubMed Central  Google Scholar 

  17. Z. Zuo, P. Zhang, F. Lin, W. Shang, R. Bi, F. Lu, J. Wu, L. Jiang, Interplay between Trx-1 and S100P promotes colorectal cancer cell epithelial-mesenchymal transition by up-regulating S100A4 through AKT activation. J. Cell. Mol. Med. 22, 2430–2441 (2018). https://doi.org/10.1111/jcmm.13541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. Chen, Y. Pan, H. Liu, F. Ning, Q. Lu, Y. Duan, X. Gan, S. Lu, H. Hou, M. Zhang, Y. Tian, G.E. Lash, Ezrin accelerates breast cancer liver metastasis through promoting furin-like convertase-mediated cleavage of Notch1. Cell. Oncol. (Dordr.) 46, 571–587 (2023). https://doi.org/10.1007/s13402-022-00761-x

    Article  CAS  PubMed  Google Scholar 

  19. K.L. Bloomfield, S.A. Osborne, D.D. Kennedy, F.M. Clarke, K.F. Tonissen, Thioredoxin-mediated redox control of the transcription factor Sp1 and regulation of the thioredoxin gene promoter. Gene 319, 107–116 (2003). https://doi.org/10.1016/s0378-1119(03)00799-6

    Article  CAS  PubMed  Google Scholar 

  20. S. Paul, S. Ghosh, S. Kumar, Tumor glycolysis, an essential sweet tooth of tumor cells. Semin. Cancer Biol. 86, 1216–1230 (2022). https://doi.org/10.1016/j.semcancer.2022.09.007

    Article  CAS  PubMed  Google Scholar 

  21. X. Zhong, X. He, Y. Wang, Z. Hu, H. Huang, S. Zhao, P. Wei, D. Li, Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. J. Hematol. Oncol. 15, 160 (2022). https://doi.org/10.1186/s13045-022-01358-5

    Article  PubMed  PubMed Central  Google Scholar 

  22. C.R. Kennedy, S.B. Tilkens, H. Guan, J.A. Garner, P.M. Or, A.M. Chan, Differential sensitivities of glioblastoma cell lines towards metabolic and signaling pathway inhibitions. Cancer Lett. 336, 299–306 (2013). https://doi.org/10.1016/j.canlet.2013.03.020

    Article  CAS  PubMed  Google Scholar 

  23. Z. Luo, J. Xu, J. Sun, H. Huang, Z. Zhang, W. Ma, Z. Wan, Y. Liu, A. Pardeshi, S. Li, Li, Co-delivery of 2-Deoxyglucose and a glutamine metabolism inhibitor V9302 via a prodrug micellar formulation for synergistic targeting of metabolism in cancer. Acta Biomater. 105, 239–252 (2020). https://doi.org/10.1016/j.actbio.2020.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. T. Zhang, X. Zhu, H. Wu, K. Jiang, G. Zhao, A. Shaukat, G. Deng, C. Qui, Targeting the ROS/PI3K/AKT/HIF-1alpha/HK2 axis of breast cancer cells: Combined administration of Polydatin and 2-Deoxy-d-glucose. J. Cell. Mol. Med. 23, 3711–3723 (2019). https://doi.org/10.1111/jcmm.14276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. D. Zhang, Q. Fei, J. Li, C. Zhang, Y. Sun, C. Zhu, F. Wang, Y. Sun, Sun, 2-Deoxyglucose reverses the promoting effect of insulin on colorectal cancer cells in vitro. PLoS One 11, e0151115 (2016). https://doi.org/10.1371/journal.pone.0151115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. S. Singh, S. Pandey, A.S. Chawla, A.N. Bhatt, B.G. Roy, D. Saluja, B.S. Dwarakanath, Dietary 2-deoxy-D-glucose impairs tumour growth and metastasis by inhibiting angiogenesis. Eur. J. Cancer 123, 11–24 (2019). https://doi.org/10.1016/j.ejca.2019.09.005

    Article  CAS  PubMed  Google Scholar 

  27. R. Pusapati, J. Settleman, TORquing metabolic reprogramming in cancer cells. Cell Cycle 15, 2387–2388 (2016). https://doi.org/10.1080/15384101.2016.1204850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. L. Li, M.A. Fath, P.M. Scarbrough, W.H. Watson, D.R. Spitz, Combined inhibition of glycolysis, the pentose cycle, and thioredoxin metabolism selectively increases cytotoxicity and oxidative stress in human breast and prostate cancer. Redox Biol. 4, 127–135 (2015). https://doi.org/10.1016/j.redox.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  29. R. Rashmi, X. Huang, J.M. Floberg, A.E. Elhammali, M.L. McCormick, G.J. Patti, D.R. Spitz, J.K. Schwarz, Radioresistant cervical cancers are sensitive to inhibition of glycolysis and redox metabolism. Cancer Res. 78, 1392–1403 (2018). https://doi.org/10.1158/0008-5472.Can-17-2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. H.C. May, J.J. Yu, M.N. Guentzel, J.P. Chambers, A.P. Cap, B.P. Arulanandam, Repurposing auranofin, ebselen, and PX-12 as antimicrobial agents targeting the thioredoxin system. Front. Microbiol. 9, 336 (2018). https://doi.org/10.3389/fmicb.2018.00336

    Article  PubMed  PubMed Central  Google Scholar 

  31. F. Wang, F. Lin, P. Zhang, W. Ni, L. Bi, J. Wu, L. Jiang, Thioredoxin-1 inhibitor, 1-methylpropyl 2-imidazolyl disulfide, inhibits the growth, migration and invasion of colorectal cancer cell lines. Oncol. Rep. 33, 967–973 (2015). https://doi.org/10.3892/or.2014.3652

    Article  CAS  PubMed  Google Scholar 

  32. B.J. Altman, Z.E. Stine, C.V. Dang, From Krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer 16, 619–634 (2016). https://doi.org/10.1038/nrc.2016.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. T. Hensley, A.T. Wasti, R.J. DeBerardinis, Glutamine and cancer: cell biology, physiology, and clinical opportunities. J. Clin. Invest. 123, 3678–3684 (2013). https://doi.org/10.1172/jci69600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. C. Gorrini, I.S. Harris, T.W. Mak, Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931–947 (2013). https://doi.org/10.1038/nrd4002

    Article  CAS  PubMed  Google Scholar 

  35. D.A. Scott, A.D. Richardson, F.V. Filipp, C.A. Knutzen, G.G. Chiang, Z.A. Ronai, A.L. Osterman, J.W. Smith, Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect. J. Biol. Chem. 286, 42626–42634 (2011). https://doi.org/10.1074/jbc.M111.282046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. J. Jeon, S. Khelifa, B. Ratnikov, D.A. Scott, Y. Feng, F. Parisi, C. Ruller, E. Lau, H. Kim, L.M. Brill, T. Jiang, D.L. Rimm, R.D. Cardiff, G.B. Mills, J.W. Smith, A.L. Osterman, Y. Kluger, Z.A. Ronai, Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. Cancer Cell 27, 354–369 (2015). https://doi.org/10.1016/j.ccell.2015.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. N.P. Shanware, A.R. Mullen, R.J. DeBerardinis, R.T. Abraham, Glutamine: pleiotropic roles in tumor growth and stress resistance. J. Mol. Med. (Berl.) 89, 229–236 (2011). https://doi.org/10.1007/s00109-011-0731-9

    Article  CAS  PubMed  Google Scholar 

  38. M. van Geldermalsen, Q. Wang, R. Nagarajah, A.D. Marshall, A. Thoeng, D. Gao, W. Ritchie, Y. Feng, C.G. Bailey, N. Deng, K. Harvey, J.M. Beith, C.I. Selinger, S.A. O’Toole, J.E. RaskoJ, J. Holst, ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene 35, 3201–3208 (2016). https://doi.org/10.1038/onc.2015.381

    Article  CAS  PubMed  Google Scholar 

  39. F. Huang, Y. Zhao, J. Zhao, S. Wu, Y. Jiang, H. MaT, T. Zhang, Upregulated SLC1A5 promotes cell growth and survival in colorectal cancer. Int. J. Clin. Exp. Pathol. 7, 6006–6014 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. M. Hassanein, M.D. Hoeksema, M. Shiota, J. Qian, B.K. Harris, H. Chen, J.E. Clark, W.E. Alborn, R. Eisenberg, P.P. Massion, SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin. Cancer Res. 19, 560–570 (2013). https://doi.org/10.1158/1078-0432.Ccr-12-2334

    Article  CAS  PubMed  Google Scholar 

  41. L. Willems, N. Jacque, A. Jacquel, N. Neveux, T.T. Maciel, M. Lambert, A. Schmitt, L. Poulain, A.S. Green, M. Uzunov, O. Kosmider, I. Radford-Weiss, I.C. Moura, P. Auberger, N. Ifrah, V. Bardet, N. Chapuis, C. Lacombe, P. Mayeux, J. Tamburini, D. Bouscary, Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia. Blood 122, 3521–3532 (2013). https://doi.org/10.1182/blood-2013-03-493163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. H. Lu, X. Li, Y. Lu, S. Qiu, Z. Fan, ASCT2 (SLC1A5) is an EGFR-associated protein that can be co-targeted by cetuximab to sensitize cancer cells to ROS-induced apoptosis. Cancer Lett. 381, 23–30 (2016). https://doi.org/10.1016/j.canlet.2016.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. R. Farina, L. Cappabianca, G. DeSantis, N. Di Ianni, P. Ruggeri, M. Ragone, S. Merolle, K.F. Tonissen, A. Gulino, A.R. Mackay, Thioredoxin stimulates MMP-9 expression, de-regulates the MMP-9/TIMP-1 equilibrium and promotes MMP-9 dependent invasion in human MDA-MB-231 breast cancer cells. FEBS Lett. 585, 3328–3336 (2011). https://doi.org/10.1016/j.febslet.2011.09.023

    Article  CAS  PubMed  Google Scholar 

  44. L. Console, M. Scalise, Z. Tarmakova, I.R. Coe, C. Indiveri, N-linked glycosylation of human SLC1A5 (ASCT2) transporter is critical for trafficking to membrane. Biochim. Biophys. Acta 1853, 1636–1645 (2015). https://doi.org/10.1016/j.bbamcr.2015.03.017

    Article  CAS  PubMed  Google Scholar 

  45. M. Scalise, L. Pochini, L. Console, M.A. Losso, C. Indiveri, The human SLC1A5 (ASCT2) amino acid transporter: From function to structure and role in cell biology. Front Cell Dev Biol 6, 96 (2018). https://doi.org/10.3389/fcell.2018.00096

    Article  PubMed  PubMed Central  Google Scholar 

  46. F. Polet, R. Martherus, C. Corbet, A. Pinto, O. Feron, Inhibition of glucose metabolism prevents glycosylation of the glutamine transporter ASCT2 and promotes compensatory LAT1 upregulation in leukemia cells. Oncotarget 7, 46371–46383 (2016). https://doi.org/10.18632/oncotarget.10131

    Article  PubMed  PubMed Central  Google Scholar 

  47. M. Scalise, L. Pochini, L. Console, M.A. Losso, C. Indiveri, The human SLC1A5 (ASCT2) amino acid transporter: From function to structure and role in cell biology. Front. Cell Dev. Biol. 6, 96 (2018). https://doi.org/10.3389/fcell.2018.00096

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 82272652, 82172816), Zhejiang Provincial Natural Science Foundation of China (No. LY22H160021), Key funding for Wenzhou High-level Talent Innovation Technology Project.

Author information

Authors and Affiliations

Authors

Contributions

T.T., L.J., X.S.: Conception and design, investigation. T.T., D.F.: Methodology. T.T., D.F., Z.J., Z.Z.: Acquisition of data. B.Z.: Data curation, software analysis. T.T., L.J., Z.J.: Writing, review, and/or revision of manuscript. L.Y., L.J., X.S.: Study supervision, funding acquisition.

Corresponding authors

Correspondence to Lei Jiang or Xuecheng Sun.

Ethics declarations

Ethics statement

All animal experiments in this study were performed under the institutional ethical guidelines approved by the Animal Ethics Committee of the First Affiliated Hospital of Wenzhou Medical University.

Competing interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Supplementary file2 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, T., Fang, D., Ji, Z. et al. Inhibition of thioredoxin-1 enhances the toxicity of glycolysis inhibitor 2-deoxyglucose by downregulating SLC1A5 expression in colorectal cancer cells. Cell Oncol. 47, 607–621 (2024). https://doi.org/10.1007/s13402-023-00887-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00887-6

Keywords

Navigation