Log in

Optimization for improved biomethane yield from cashew nut hulls through response surface methodology

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The increase of cashew nut-processing plants in Burkina Faso caused high amount of cashew nut waste. The waste is either discharged into the environment or used as fuel, causing significant harm to both the environment (such as global warming) and human health (such as respiratory diseases). To address these issues, this project proposes an alternative biotechnological method for recovering the waste and producing biogas. The aim is to contribute to the energy autonomy of processing units. The objective of this study was to optimize biomethane yield from cashew nut hulls using response surface methodology. A central composite design (CCD) methodology with three independent variables was applied to investigate the effects of inoculum concentration, substrate concentration, and incubation temperature on biogas, biomethane, and methanogenic bacteria numbers. The experimental design involved using 28 glass bottles (300 ml) as batch reactors with a working volume of 2/3. The optimal biogas, CH4, and methanogenic bacteria numbers were estimated using the numerical and graphical optimization tool of Design Expert Software®. Surface response design results revealed that experimental results were best fitted into a quadratic polynomial model with regression coefficient values of more than 0.80 for all responses. Optimized preparation conditions for biomethane production were 50% inoculum concentration, 2% for substrate concentration, and 45 °C for temperature. Optimal conditions made it possible to note biomethane production of 157.7 mL/g VS with a load reaching 7 × 103 CFU/mL for methanogenic bacteria. This study has defined the optimum parameters for producing biomethane from cashew nut shells. The units will be able to use these results to add value to cashew nut shell waste and achieve energy autonomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated in this study are provided in the submitted article.

References

  1. Olaitan PB, Oluwayemisi OA, Olalekan IS, Anna AM, Shamsudeen TB (2023) Cashew production and breeding in 5 West African Countries. J Sci Res Reports 29(5):28–39

    Google Scholar 

  2. Some LFMC (2014) Analyse socioéconomique des systèmes de production d'anacarde au Burkina Faso: cas des régions des Cascades et des Hauts-Bassins. Mémoire de master. Université polytechnique de Bobo Dioulasso (Bourkina Fasso), p 66

  3. Tagutchou JP, Naquin P (2012) Caracterisation et traitement thermochimique des coques d ’ anacarde en vue de leur valorisation énergetique dans les procédés de transformation artisanale de noix de cajou. Déchets Sci Tech - Rev Francoph d’Ecologie Ind N 62:28–35

    Google Scholar 

  4. Sawadogo JB, Barsan N, Nikiema M, Mosnegutu E, Traore AS, Ouattara AS et al (2023) Anaerobic co-digestion of agro-industrial cashew nut wastes with organic matters for biogas production : case of cashew nut hull and cashew almond skin. Int J Biol Chem Sci 17(1):220–232

    Article  Google Scholar 

  5. Godjo T, Tagutchou J, Naquin P, Gourdon R (2015) Valorisation des coques d’anacarde par pyrolyse au Bénin. Déchets Sci Tech-N 70:11–18

    Google Scholar 

  6. Zhang H, Zhang P, Ye J, Wu Y, Fang W, Gou X (2016) International biodeterioration & biodegradation improvement of methane production from rice straw with rumen fl uid pretreatment : a feasibility study. Int Biodeterior Biodegradation 113:9–16. https://doi.org/10.1016/j.ibiod.2016.03.022

    Article  Google Scholar 

  7. Chynoweth DP, Owens JM, Legrand R (2001) Renewable methane from anaerobic digestion of biomass. Renew Energy 22:1–8

    Article  Google Scholar 

  8. Hansen TL, Ejbye J, Angelidaki I, Marca E, Jansen C, Mosbæk H et al (2004) Method for determination of methane potentials of solid organic waste. Waste Manag 24:393–400

    Article  Google Scholar 

  9. Sarker S, Lamb JJ, Hjelme DR, Lien KM (2019) A review of the role of critical parameters in the design and operation of biogas production plants. Appl Sci 9(9):1915. https://doi.org/10.3390/app9091915

    Article  Google Scholar 

  10. Omoregbee HO, Okwu MO, Tartibu LK, Ivbanikaro AE, Olanipekun MU, Edward AB (2022) Effect of process parameters on biogas yield: a systematic review. In: Lalit Kumar Singh GC (ed) Prod Techn gaseous solid biofuels, pp 65–90. https://doi.org/10.1002/9781119785842.ch3

  11. Budiyono B, Riyanta AB, Sumardiono S, Jos B, Syaichurrozi I (2021) Optimization of parameters for biogas production from bagasse using taguchi method. Polish J Environ Stud 30(5):4453–4461

    Article  Google Scholar 

  12. Hossain MS, Ul KT, Onik MH, Kumar D, Rahman MA, Yousuf A et al (2022) Impact of temperature, inoculum flow pattern, inoculum type, and their ratio on dry anaerobic digestion for biogas production. Sci Rep 12(1):1–13. https://doi.org/10.1038/s41598-022-10025-1

    Article  Google Scholar 

  13. Das P, Sreelatha TD, Ganesh A (2004) Bio oil from pyrolysis of cashew nut shell-characterisation and related properties. Biomass Bioenerg 27(3):265–275

    Article  Google Scholar 

  14. Singh RN, Jena U, Patel JB, Sharma AM (2006) Feasibility study of cashew nut shells as an open core gasifer feedstock. Renew Energy 31(4):481–487

    Article  Google Scholar 

  15. Nikiema M, Somda MK, Sawadogo JB, Dianou D, Traoré AS, Ouattara AS (2020) Valorization of agricultural waste: theoretical estimation and experimental biomethane yield from cashew nut hulls. J Sustain Bioenergy Syst 10(04):113–130

    Article  Google Scholar 

  16. Walid F, Fkihi SE, Benbrahim H, Tagemouati H (2021) Modeling and optimization of anaerobic digestion : a review. E3S Web Conf 01022:1–7

    Google Scholar 

  17. Ahmed S, Kazda M (2017) Characteristics of on-demand biogas production by using sugar beet silage. Anaerobe 46:114–21. https://doi.org/10.1016/j.anaerobe.2017.04.016

    Article  Google Scholar 

  18. Choi Y, Ryu J, Lee SR (2020) Influence of carbon type and carbon to nitrogen ratio on the biochemical methane potential, pH, and ammonia nitrogen in anaerobic digestion. J Anim Sci Technol 62(1):74–83

    Article  Google Scholar 

  19. Shitophyta LM, Salsabila A, Anggraini F, Jamilatun S (2021) Development of kinetic models for biogas production from tofu liquid waste. Elkawnie 7(1):107

    Article  Google Scholar 

  20. Rajput AA, Sheikh Z (2019) Effect of inoculum type and organic loading on biogas production of sunflower meal and wheat straw. Sustain Environ Res 1(1):1–10

    Google Scholar 

  21. Adamu A, Aluyor E (2013) Empirical model for predicting rate of biogas production. Glob J Eng Res 12(1):63–68

    Google Scholar 

  22. Roberts S, Mathaka N, Zeleke MA, Nwaigwe KN (2023) Comparative analysis of five kinetic models for prediction of methane yield. J Inst Eng Ser A [Internet] 104(2):335–42. https://doi.org/10.1007/s40030-023-00715-y

    Article  Google Scholar 

  23. Ali MM, Dia N, Bilal B, Ndongo M (2018) Theoretical models for prediction of methane production from anaerobic digestion: a critical review. Int J Phys Sci 13(13):206–216

    Article  Google Scholar 

  24. Weedermann M, Seo G, Wolkowicz GSK (2013) Mathematical model of anaerobic digestion in a chemostat: effects of syntrophy and inhibition. J Biol Dyn 7(1):59–85

    Article  MathSciNet  Google Scholar 

  25. Sathish S, Vivekanandan S (2016) Parametric optimization for floating drum anaerobic bio-digester using response surface methodology and artificial neural network. Alexandria Eng J [Internet]. 55(4):3297–307. https://doi.org/10.1016/j.aej.2016.08.010

    Article  Google Scholar 

  26. Bezerra MA, Santell ER, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology ( RSM ) as a tool for optimization in analytical chemistry. Review 76:965–977

    Google Scholar 

  27. Nugraha WD, Senduk AT, Hawali H, Matin A (2018) Optimization of biogas production by Solid State Anaerobic Digestion (SS-AD ) method from water hyacinth with response surface methodology ( RSM ). E3S Web Conf 16(73):0–4

  28. Zwain HM, Barghash H, Vakili M, Majdi HS, Dahlan I (2022) Modeling and optimization of process parametric interaction during high-rate anaerobic digestion of recycled paper mill wastewater using the response surface methodology. Water Reuse 12(1):78

    Google Scholar 

  29. Pishgar-Komleh SH, Keyhani A, Mostofi-Sarkari MR, Jafari A (2012) Optimization of seed corn harvesting losses applying response surface methodology. Res J Appl Sci Eng Technol 4(15):2350–2356

    Google Scholar 

  30. Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Stat Soc Ser B 13(1):1–38

    Article  MathSciNet  Google Scholar 

  31. Arslan-AlatonIdil I, Yalabik AB, Olmez-Hanci T (2010) Development of experimental design models to predict Photo-Fenton oxidation of a commercially important naphthalene sulfonate and its organic carbon content. Chem Eng J [Internet] 165(2):597–606. https://doi.org/10.1016/j.cej.2010.10.003

    Article  Google Scholar 

  32. Montgomery DC (2016) Design and analysis of experiments. 8e edition. Wiley J, Sons, editors. Handbook of Reading Research. Arizona 63–90

  33. Sawadogo BJ, Dianou D, Alfred S (2012) Émissions de dioxyde de carbone et de méthane des termitières de Macrotermes bellicosus au Burkina Faso. Int J Biol Chem Sci 6(3):1223–1232

    Google Scholar 

  34. Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ et al (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59(5):927–934

    Article  Google Scholar 

  35. Wolfe RS, Metcalf WW (2010) A vacuum-vortex technique for preparation of anoxic solutions or liquid culture media in small volumes for cultivating methanogens or other strict anaerobes. Anaerobe [Internet]. 16(3):216–9. https://doi.org/10.1016/j.anaerobe.2009.11.005

    Article  Google Scholar 

  36. Homayoonfal M, Khodaiyan F, Mousavi M (2015) Modelling and optimising of physicochemical features of walnut-oil beverage emulsions by implementation of response surface methodology: Effect of preparation conditions on emulsion stability. Food Chem. 174:649–59. https://doi.org/10.1016/j.foodchem.2014.10.117

    Article  Google Scholar 

  37. Cruz-González K, Torres-López O, García-León A, Guzmán-Mar JL, Reyes LH, Hernández-Ramírez A et al (2010) Determination of optimum operating parameters for Acid Yellow 36 decolorization by electro-Fenton process using BDD cathode. Chem Eng J 160(1):199–206

    Article  Google Scholar 

  38. Lawal AA, Dzivama AU, Wasinda MK (2016) Effect of inoculum to substrate ratio on biogas production of sheep paunch manure. Res Agric Eng 62(1):8–14

    Article  Google Scholar 

  39. Ma J, Hang T, Smits M, Verstraete W, Carballa M (2011) Bioresource technology enhanced biomethanation of kitchen waste by different pre-treatments. Bioresour Technol 102(2):592–9. https://doi.org/10.1016/j.biortech.2010.07.122

    Article  Google Scholar 

  40. Golwala S, Kothari K (2021) Maximizing biogas yield through inoculum and optimizing various operating parameters: A review. Proceedings of the Recent Advances in Renewable Energy Sources - RARES2021. https://doi.org/10.2139/ssrn.3807854

  41. Lukitawesa, Patinvoh RJ, Millati R, Sárvári-Horváth I, Taherzadeh MJ (2020) Factors influencing volatile fatty acids production from food wastes via anaerobic digestion. Bioengineered. 11(1):39–52. https://doi.org/10.1080/21655979.2019.1703544

    Article  Google Scholar 

  42. Chae KJ, Jang A, Yim SK, Kim IS (2008) The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresour Technol 99:1–6

    Article  Google Scholar 

  43. Gao WJ, Leung KT, Qin WS, Liao BQ (2011) Bioresource Technology Effects of temperature and temperature shock on the performance and microbial community structure of a submerged anaerobic membrane bioreactor. Bioresour Technol [Internet]. 102(19):8733–40. https://doi.org/10.1016/j.biortech.2011.07.095

    Article  Google Scholar 

  44. Myers R, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process and product optimization using designed experiments, 3rd ed. John Wiley & Sons, Hoboken, NJ, p 680

  45. Quanhong L, Caili F (2005) Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein. Food Chem 92(4):701–706

    Article  Google Scholar 

  46. Forgacs G, Pourbafrani M, Niklasson C, Taherzadeh MJ, Hovath IS (2011) Methane production from citrus wastes :process development and cost estimation. J Chem Technol Biotechno 2012:250–255

    Google Scholar 

  47. Wikandari R, Millati R, Cahyanto MN, Taherzadeh MJ (2014) Biogas production from citrus waste by membrane bioreactor. Molecules 23(12):3380. https://doi.org/10.3390/molecules23123380

    Article  Google Scholar 

  48. Kassongo J, Shahsavari E, Ball AS (2020) Renewable energy from the solid-state anaerobic digestion of grape marc and cheese whey at high treatment capacity. Biomass Bioenergy 143:105880. https://doi.org/10.1016/j.biombioe.2020.105880

    Article  Google Scholar 

  49. Nikiema M, Sawadogo JB, Somda MK, Maiga Y, Mogmenga I, Ouattara CAT et al (2021) Influence of inoculums source and pretreatment on biogas production from cashew nut shells (Anacardium occidentale). Int J Environ Agric Biotechnol 6(6):73–83

    Google Scholar 

  50. El-Mashad HM, Zeeman G, van Loon WK, Bot GP, Lettinga G (2004) Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresour Technol 95:191–201

    Article  Google Scholar 

  51. Babaei A, Shayegan J (2019) Effects of temperature and mixing modes on the performance of municipal solid waste anaerobic slurry digester 09 Engineering 0907 Environmental Engineering 09 Engineering 0904 Chemical Engineering. J Environ Heal Sci Eng 17(2):1077–1084

    Article  Google Scholar 

  52. Moset V, Poulsen M, Wahid R, Højberg O, Møller HB (2015) Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology. Microb Biotechnol 8(5):787–800

    Article  Google Scholar 

  53. Alrowais R, Said N, Al-Otaibi A, Hatata AY, Essa MA, Abdel Daiem MM (2023) Comparing the effect of mesophilic and thermophilic anaerobic co-digestion for sustainable biogas production: an experimental and recurrent neural network model study. J Clean Prod 392(15):136248

    Article  Google Scholar 

  54. Gopal LC, Govindarajan M, Kavipriya MR, Mahboob S, Al-ghanim KA, Virik P et al (2020) Optimization strategies for improved biogas production by recycling of waste through response surface methodology and artificial neural network: sustainable Energy perspective research. J King Saud Univ-Sci [Internet] 101241. https://doi.org/10.1016/j.jksus.2020.101241

  55. Pohl M, Mumme J, Heeg K, Nettmann E (2012) Thermo- and mesophilic anaerobic digestion of wheat straw by the upflow anaerobic solid-state (UASS) process. Bioresour Technol. 124:321–7. https://doi.org/10.1016/j.biortech.2012.08.063

    Article  Google Scholar 

  56. Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domíguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22(9):477–485

    Article  Google Scholar 

  57. De Vrieze J, Raport L, Willems B, Verbrugge S, Volcke E, Meers E et al (2015) Inoculum selection influences the biochemical methane potential of agro-industrial substrates. Microb Biotechnol 8(5):776–786

    Article  Google Scholar 

  58. Angelidaki I, Ahring BK (1994) Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Water Res 28(3):727–731

    Article  Google Scholar 

  59. Hansen KH, Angelidaki I, Ahring BK (1998) Anaerobic digestion of swine manure: inhibition by ammonia. Water Res 32(1):5–12

    Article  Google Scholar 

  60. Astals S, Esteban-Gutiérrez M, Fernández-Arévalo T, Aymerich E, García-Heras JL, Mata-Alvarez J (2013) Anaerobic digestion of seven different sewage sludges: a biodegradability and modelling study. Water Res 47(16):6033–6043. https://doi.org/10.1016/j.watres.2013.07.019

    Article  Google Scholar 

  61. Nikièma M, Somda MK, Adéoti K, Traoré D, Baba-moussa F, Toukourou F et al (2017) Optimization of biogas production from organic municipal waste : development of activated sludge as digesters inoculum. J Environ Prot 8:1674–1687

    Article  Google Scholar 

  62. Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L (2011) Review-the anaerobic digestion of solid organic waste. Waste Manag 31(8):1737–1744

    Article  Google Scholar 

  63. Kwietniewska E, Tys J (2014) Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renew Sust Energy Rev 34:491–500

    Article  Google Scholar 

  64. Wang S, Hou X, Su H (2017) Exploration of the relationship between biogas production and microbial community under high salinity conditions. Sci Rep 7(1):1149. Available from: http://www.nature.com/articles/s41598-017-01298-y

  65. Milaiti M, Traoré AS, Moletta R (2003) Essais de fermentation à partir de Calotropis procera production de CH4 en fonction de la charge en substrat et en fonction de la température. Sci Médecine. 02(CAMES-Série A):73–8

    Google Scholar 

  66. Nikiema M, Sawadogo JB, Somda MK, Traore D, Dianou D (2015) Optimisation de la production de biométhane à partir des déchets organiques municipaux optimization of biomethane production from municipal solid organic wastes. Int J Biol Chem Sci 9(5):2743–2756

    Article  Google Scholar 

  67. Saenab A, Wiryawan KG, Retnani Y, Wina E (2017) Anacardic acid isolated from cashew nut shell ( anacardium occidentale ) affects methane and other products in the rumen fermentation. Media Peternak 40(August):94–100

    Article  Google Scholar 

  68. Liew LN, Shi J, Li Y (2012) Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass Bioenergy 46:125–32. https://doi.org/10.1016/j.biombioe.2012.09.014

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a research grant from the International Foundation for Science (IFS_ I-3-E-6204-2). Therefore, the authors are grateful to this funding and support of this research.

Author information

Authors and Affiliations

Authors

Contributions

Mahamadi Nikiema was responsible for the conceptualization and design of the study. Salifou Bambara worked in acquisition and interpretation of data through field and laboratory work. Mahamadi Nikiema drafted the article and Marius K. Somda, Joseph B. Sawadogo, Narcis Barsan, Ynoussa Maiga, Omar Cheik Tidiane Compaoré, S. Hamidou Ouili, Marius K. Somda, Cheik A. T. Ouattara, Iliassou Mogmenga, Dayéri Dianou, Alfred S. Traoré, and Aboubakar S. Ouattara revised it critically. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mahamadi Nikiema.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikiema, M., Somda, M.K., Sawadogo, J.B. et al. Optimization for improved biomethane yield from cashew nut hulls through response surface methodology. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05577-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05577-3

Keywords

Navigation