Log in

Single Active Switch Hybrid Dual Diode-Capacitor Boost Converter With Reduced Voltage Stress for High Voltage Gain Applications

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, a single-switch hybrid dual diode-capacitor (HDDC) boost converter with less stress over all devices for high voltage gain applications is proposed. It combines a voltage boost cell with two back-to-back diode-capacitor cells for providing high voltage gain. The current spikes across the switching devices, occurring due to the diode-capacitor circuit, are effectively truncated by an inductor that is used at the input side. With a single inductor and a single MOSFET, the proposed HDDC converter provides continuous input current, a common ground (C.g) structure and keeps the device voltage stress (V\(_\textrm{stress}\)) and current stress under check. This allows the use of lower-rating devices and is helpful in restricting switching losses, thus improving the comprehensive efficiency of the converter. For integrating RES with micro-grid, the proposed HDDC converter provides all the desirable features. A MATLAB/Simulink model is employed for testing purposes of the proposed HDDC. Additionally, a hardware prototype of the HDDC, with a power rating of 280 W and voltage output of 200 V, is subjected to laboratory testing at a frequency of 33 kHz. The findings from both the simulation and hardware testing are then compared to validate the performance of the proposed HDDC. At near-rated load, the converter operates at an efficiency of around 95.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Taner, T.: Energy and exergy analyze of pem fuel cell: a case study of modeling and simulations. Energy 143, 284–294 (2018)

    Article  Google Scholar 

  2. Li, K.; Yafei, H.; Ioinovici, A.: Generation of the large dc gain step-up nonisolated converters in conjunction with renewable energy sources starting from a proposed geometric structure. IEEE Trans. Power Electron. 32(7), 5323–5340 (2016)

    Article  Google Scholar 

  3. Taner, T.: The micro-scale modeling by experimental study in pem fuel cell. J. Therm. Eng. 3(6), 1515–1526 (2017)

    Google Scholar 

  4. Maheswari, L.; Sivakumaran, N.: An isolated single-switch high step-up dc/dc converter with three-winding transformer for solar photovoltaic applications. Electr. Eng. 102, 1383–1392 (2020)

    Article  Google Scholar 

  5. Ashfaq, M.H.; Butt, O.M.; Ahmed, R.H.; Selvaraj, J.A.L.; Rahim, N.A.: Improved eps-based robust dynamic control of constant current source-based isolated dual-active-bridge dc-dc converter with reduced current stress. Arab. J. Sci. Eng. (2023). https://doi.org/10.1007/s13369-023-08353-z

    Article  Google Scholar 

  6. Tseng, K.-C.; Chen, J.-Z.; Lin, J.-T.; Huang, C.-C.; Yen, T.-H.: High step-up interleaved forward-flyback boost converter with three-winding coupled inductors. IEEE Trans. Power Electron. 30(9), 4696–4703 (2014)

    Article  Google Scholar 

  7. Abbasian, S.; Farsijani, M.; Shahirinia, A.; et al.: A non-isolated common-ground high step-up soft switching dc-dc converter with single active switch. IEEE Trans. Ind. Electron. 70(6), 5728–5738 (2022)

    Article  Google Scholar 

  8. Premkumar, M.; Kumar, C.; Anbarasan, A.; Sowmya, R.: A novel non-isolated high step-up dc-dc boost converter using single switch for renewable energy systems. Electr. Eng. 102, 811–829 (2020)

    Article  Google Scholar 

  9. Jalili, J.; Mirtalaei, S.M.M.; Mohammadi, M.R.; Majidi, B.: A zvs high step-up converter based on an integrated boost-cuk topology. Electr. Eng. 104(2), 807–816 (2022)

    Article  Google Scholar 

  10. Kokkonda, K.; Kulkarni, P.S.: A high gain soft-switching active-clamped coupled-inductor-based converter for grid-tied photovoltaic applications. Electr. Eng. 103(6), 2783–2797 (2021)

    Article  Google Scholar 

  11. Vaghela, M.A.; Mulla, M.A.: Ultra-high step-up gain interleaved coupled inductor dc-dc converter with reduced voltage stress and eliminated right half plane zero. Arab. J. Sci. Eng. 48(5), 6399–6418 (2023)

    Article  Google Scholar 

  12. Vaghela, M.A.; Mulla, M.A.: Improved dynamic response of coupled inductor-based high-step-up-gain dc-dc converter using interleaved technique. Arab. J. Sci. Eng. 48, 1–14 (2023)

    Article  Google Scholar 

  13. Zhao, J.; Chen, D.: Switched-capacitor high voltage gain z-source converter with common ground and reduced passive component. IEEE Access 9, 21395–21407 (2021)

    Article  Google Scholar 

  14. Li, Q.; Huangfu, Y.; Liangcai, X.; Wei, J.; Ma, R.; Zhao, D.; Gao, F.: An improved floating interleaved boost converter with the zero-ripple input current for fuel cell applications. IEEE Trans. Energy Convers. 34(4), 2168–2179 (2019)

    Article  Google Scholar 

  15. Elsayad, N.; Moradisizkoohi, H.; Mohammed, O.A.: A single-switch transformerless dc-dc converter with universal input voltage for fuel cell vehicles: analysis and design. IEEE Trans. Veh. Technol. 68(5), 4537–4549 (2019)

    Article  Google Scholar 

  16. Kathiresan, J.; Natarajan, S.K.; Jothimani, G.: Design and implementation of modified sepic high gain dc-dc converter for dc microgrid applications. Int. Trans. Electr. Energy Syst. 31(8), e12921 (2021)

    Article  Google Scholar 

  17. Pourfarzad, H.; Saremi, M.; Jalilzadeh, T.: An extended high-voltage-gain dc-dc converter with reduced voltage stress on switches/diodes. Electr. Eng. 102, 2435–2452 (2020)

    Article  Google Scholar 

  18. Abbasi, M.; Abbasi, E.; Tousi, B.; Gharehpetian, G.B.: New family of expandable step-up/-down dc-dc converters with increased voltage gain and decreased voltage stress on capacitors. Int. Trans. Electr. Energy Syst. 30(3), e12252 (2020)

    Article  Google Scholar 

  19. Stala, R.; Waradzyn, Z.; Penczek, A.; Mondzik, A.; Skała, A.: A switched-capacitor dc-dc converter with variable number of voltage gains and fault-tolerant operation. IEEE Trans. Industr. Electron. 66(5), 3435–3445 (2018)

    Article  Google Scholar 

  20. Tekin, H.; Bulut, K.; Ertekin, D.: A novel switched-capacitor and fuzzy logic-based quadratic boost converter with mitigated voltage stress, applicable for dc micro-grid. Electr. Eng. 104(6), 4391–4413 (2022)

    Article  Google Scholar 

  21. Nguyen, M.-K.; Duong, T.-D.; Lim, Y.-C.: Switched-capacitor-based dual-switch high-boost dc-dc converter. IEEE Trans. Power Electron. 33(5), 4181–4189 (2017)

    Article  Google Scholar 

  22. Kishor, Y.; Patel, R.: A modified z-source switched-capacitor based non-isolated high gain dc-dc converter for photovoltaic applications. Int. J. Circuit Theory Appl. 50(10), 3387–3408 (2022)

    Article  Google Scholar 

  23. Heris, P.C.; Saadatizadeh, Z.; Sabahi, M.; Babaei, E.: A new switched-capacitor/switched-inductor-based converter with high voltage gain and low voltage stress on switches. Int. J. Circuit Theory Appl. 47(4), 591–611 (2019)

    Article  Google Scholar 

  24. Tang, Yu.; Wang, T.; He, Y.: A switched-capacitor-based active-network converter with high voltage gain. IEEE Trans. Power Electron. 29(6), 2959–2968 (2013)

    Article  Google Scholar 

  25. He, L.; Zheng, Z.: High step-up dc-dc converter with switched-capacitor and its zero-voltage switching realisation. IET Power Electron. 10(6), 630–636 (2017)

    Article  Google Scholar 

  26. Tewari, N.; Thazhathu, S.V.: Family of modular, extendable and high gain dc-dc converter with switched inductor and switched capacitor cells. IET Power Electron. 13(7), 1321–1331 (2020)

    Article  Google Scholar 

  27. Faridpak, B.; Bayat, M.; Nasiri, M.; Samanbakhsh, R.; Farrokhifar, M.: Improved hybrid switched inductor/switched capacitor dc-dc converters. IEEE Trans. Power Electron. 36(3), 3053–3062 (2020)

    Article  Google Scholar 

  28. Khan, S.; Mahmood, A.; Tariq, M.; Zaid, M.; Khan, I.; Rahman, S.: Improved dual switch non-isolated high gain boost converter for dc microgrid application. In: 2021 IEEE Texas Power and Energy Conference (TPEC), pp. 1–6. IEEE (2021)

  29. Alzahrani, A.: Interleaved switched-inductor boost converter for photovoltaic energy application. Arab. J. Sci. Eng. 48(5), 6419–6430 (2023)

  30. Allehyani, A.: Analysis of a transformerless single switch high gain dc-dc converter for renewable energy systems. Arab. J. Sci. Eng. 46(10), 9691–9702 (2021)

    Article  Google Scholar 

  31. Dong**, H.; Yin, A.; Ghaderi, D.: A transformer-less single-switch boost converter with high-voltage gain and mitigated-voltage stress applicable for photovoltaic utilizations. Int. Trans. Electr. Energy Syst. 30(10), e12569 (2020)

    Google Scholar 

  32. Zaid, M.; Khan, S.; Mahmood, A.; Ali, M.; Sarwar, A.; Khalid, M.: A new high gain boost converter with common ground for solar-pv application and low ripple input current. Arab. J. Sci. Eng. 48, 1–15 (2023)

    Article  Google Scholar 

  33. Kumar, G.G.; Sundaramoorthy, K.; Karthikeyan, V.; Babaei, E.: Switched capacitor-inductor network based ultra-gain dc-dc converter using single switch. IEEE Trans. Industr. Electron. 67(12), 10274–10283 (2020)

    Article  Google Scholar 

  34. Taner, T.: The novel and innovative design with using h2 fuel of pem fuel cell: efficiency of thermodynamic analyze. Fuel 302, 121109 (2021)

    Article  Google Scholar 

  35. Vaghela, M.A.; Mulla, M.A.: Small-signal model of two-phase interleaved coupled inductor-based high step-up gain converter in dcm. Electr. Eng. 105, 1–19 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreejith Sekaran.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, I., Sekaran, S. & Pradhan, S.K. Single Active Switch Hybrid Dual Diode-Capacitor Boost Converter With Reduced Voltage Stress for High Voltage Gain Applications. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09133-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09133-z

Keywords

Navigation