Log in

A novel switched-capacitor and fuzzy logic-based quadratic boost converter with mitigated voltage stress, applicable for DC micro-grid

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

High-voltage and efficient power converter topologies equipped with the simple and practical controller circuits are necessary, especially for integration between the low-power and low-voltage renewable energy sources (RESs) like the photovoltaic (PV) arrays and the grid. These converters can be used widely in electrical vehicles (EVs) or charging stations, aquatic, medical, transportation application and other cases. This study proposes a switched capacitor (SC)-based quadratic boost converter (QBC) structure that provides high-voltage gain at low duty cycles equipped with the fuzzy logic control (FLC) technique. The output gain of the proposed converter is higher than a second-order step-up converter or a conventional QB circuit thanks to the presented switched-capacitor topology and the manipulation of the switches in conventional QBC. By using the second switch to the conventional QBC, the voltage stress across the main power switch will decrease that enhance the reliability and long-life of the converter. Since the SC block acts as an intermediate layer between the QB and load through the capacitors and diodes of this block, the voltage and current stresses of the power switches and diodes on the QB side are less than stresses for semiconductors for classical QB and boost converter. In this study, the proposed QBC and controller system are analyzed mathematically in detail and in MATLAB/SIMULINK environment. A 200 W prototype was developed in the laboratory to validate the proposed converter and computerized analysis. Finally, the theoretical and experimental results were compared and verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Ertekin D, Bulut K, Tekin H, Moschopoulos G (2022) A design for switched capacitor and single-switch DC–DC boost converter by a small signal-based PI controller. Int J Circ Theor Appl 50(5):1620–1651. https://doi.org/10.1002/cta.3213

    Article  Google Scholar 

  2. Celik MA, Genc N, Uzmus H (2022) Experimental verification of interleaved hybrid DC/DC boost converter. J Power Electron. https://doi.org/10.1007/s43236-022-00471-5

    Article  Google Scholar 

  3. Hema Rani P, Navasree S, George S, Ashok S (2019) Fuzzy logic supervisory controller for multi-input non-isolated DC to DC converter connected to DC grid. Int J Electr Power Energy Syst 112:49–60. https://doi.org/10.1016/j.ijepes.2019.04.018

    Article  Google Scholar 

  4. Al-Saffar MA, Ismail EH (2015) A high voltage ratio and low stress DCeDC converter with reduced input current ripple for fuel cell source. Renew. Energy 82:35–43

    Article  Google Scholar 

  5. Qi Q, Ghaderi D, Guerrero JM (2021) Sliding mode controller-based switched-capacitor-based high DC gain and low voltage stress DC-DC boost converter for photovoltaic applications. Int J Electr Power Energy Syst 125:106496. https://doi.org/10.1016/j.ijepes.2020.106496

    Article  Google Scholar 

  6. Veerachary M, Kumar P (2020) Analysis and design of Quasi-Z-Source equivalent DC–DC boost converters. IEEE Trans Ind Appl 56(6):6642–6656. https://doi.org/10.1109/TIA.2020.3021372

    Article  Google Scholar 

  7. Genc N, Uzmus H (2019) Digital control of bridgeless interleaved PFC boost converter based on predicted input current. IETE J Res. https://doi.org/10.1080/03772063.2019.1682070

    Article  Google Scholar 

  8. Hwu KI, Jiang WZ, Chien JY (2016) Isolated high voltage-boosting converter derived from forward. Int J Circ Theor Appl 44(2):280–304

    Article  Google Scholar 

  9. Pop-Calimanu IM, Lica S, Popescu S, Lascu D, Lie I, Mirsu R (2019) A new hybrid inductor-based boost DC-DC converter suitable for applications in photovoltaic systems. Energies 12:252. https://doi.org/10.3390/en12020252

    Article  Google Scholar 

  10. Ho CY, Ling BW, Liu Y, Tam PK, Teo K (2008) Optimal PWM control of switched-capacitor DC–DC power converters via model transformation and enhancing control techniques. IEEE Trans Circuits Syst I Regul Pap 55(5):1382–1391. https://doi.org/10.1109/TCSI.2008.916442

    Article  MathSciNet  Google Scholar 

  11. Tang Y, Wang T, He Y (2014) A switched-capacitor-based active-network converter with high voltage gain. IEEE Trans Power Electron 29(6):2959–2968. https://doi.org/10.1109/TPEL.2013.2272639

    Article  Google Scholar 

  12. Kwon J, Kwon B (2009) High step-up active-clamp converter with input- current doubler and output-voltage doubler for fuel cell power systems. IEEE Trans on Power Electron 24(1):108–115

    Article  Google Scholar 

  13. Park K, Moon G, Youn M (2010) Nonisolated high step-up boost converter integrated with sepic converter. IEEE Trans on Power Electron 25(9):2266–2275

    Article  Google Scholar 

  14. Ghaderi D, Maroti PK, Sanjeevikumar P, Holm-Nielsen JB, Hossain E, Nayyar A (2020) A modified step-up converter with small signal analysis-based controller for renewable resource applications. Appl Sci 10:102. https://doi.org/10.3390/app10010102

    Article  Google Scholar 

  15. Park K, Moon G, Youn M (2011) Nonisolated high step-up stacked converter based on boost-integrated isolated converter. IEEE Trans Power Electron 26(2):577–587. https://doi.org/10.1109/TPEL.2010.2066578

    Article  Google Scholar 

  16. Hu D, Yin A, Ertekin D (2020) A transformer-less single-switch boost converter with high-voltage gain and mitigated-voltage stress applicable for photovoltaic utilizations. Int Trans Electr Energy Syst 30(10):1–22. https://doi.org/10.1002/2050-7038.12569

    Article  Google Scholar 

  17. Cheng H, Smedley KM, Abramovitz A (2009) A wide-input–wide-output (WIWO) DC–DC converter. IEEE Trans Power Electr 25(2):280–289. https://doi.org/10.1109/APEC.2008.4522933

    Article  Google Scholar 

  18. Abutbul O, Gherlitz A, Berkovich Y, Ioinovici A (2003) Step-up switching-mode converter with high voltage gain using a switched-capacitor circuit. IEEE Trans Circuit Syst I 50(8):1098–1102

    Article  Google Scholar 

  19. Hang L, Subramaniam U, Bayrak G, Moayedi H, Ghaderi D, Minaz MR (2020) Influence of a proposed switching method on reliability and total harmonic distortion of the quasi Z-source inverters. IEEE Access 8:33088–33100. https://doi.org/10.1109/ACCESS.2020.2973797

    Article  Google Scholar 

  20. Axelrod B, Berkovich Y, Ioinovici A (2008) Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC–DC PWM converters. IEEE Trans Circuits Syst I Regul Pap 55(2):687–696. https://doi.org/10.1109/TCSI.2008.916403

    Article  MathSciNet  Google Scholar 

  21. Fardoun AA, Ismail EH (2010) Ultra step-up DC–DC converter with reduced switch stress. IEEE Trans Ind Appl 46(5):2025–2034. https://doi.org/10.1109/TIA.2010.2058833

    Article  Google Scholar 

  22. Sadeghpour D, Bauman J (2022) High-efficiency coupled-inductor switched-capacitor boost converter with improved input current ripple. IEEE Trans Indust Electron 69(8):7940–7951. https://doi.org/10.1109/TIE.2021.3109505

    Article  Google Scholar 

  23. Wong YS, Chen JF, Liu KB, Hsieh YP (2017) A novel high step-up DC-DC converter with coupled inductor and switched clamp capacitor techniques for photovoltaic systems. Energies 10(3):378. https://doi.org/10.3390/en10030378

    Article  Google Scholar 

  24. Aguilar-Ibanez C, Moreno-Valenzuela J, García-Alarcón O, Martinez-Lopez M, Acosta JÁ, Suarez-Castanon MS (2021) PI-type controllers and Σ-Δ modulation for saturated DC-DC buck power converters. IEEE Access 9:20346–20357. https://doi.org/10.1109/ACCESS.2021.3054600

    Article  Google Scholar 

  25. Dong W, Li S, Fu X, Li Z, Fairbank M, Gao Y (2021) Control of a buck DC/DC converter using approximate dynamic programming and artificial neural networks. IEEE Trans Circuits Syst I Regul Pap 68(4):1760–1768. https://doi.org/10.1109/TCSI.2021.3053468

    Article  Google Scholar 

  26. Shtessel YB, Zinober AS, Shkolnikov IA (2003) Sliding mode control of boost and buckboost power converters using method of stable system centre. Automatica 39(6):1061–1067. https://doi.org/10.1016/S0005-1098(03)00068-2

    Article  MathSciNet  MATH  Google Scholar 

  27. El Fadil H, Giri F, Ouadi H (2006) Adaptive sliding mode control of PWM boost DC-DC converters. In: 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, 2006, pp. 3151–3156, https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4777142.

  28. Oucheriah S, Guo L (2013) PWM-based adaptive sliding-mode control for boost DC–DC converters. IEEE Trans Industr Electron 60(8):3291–3294. https://doi.org/10.1109/TIE.2012.2203769

    Article  Google Scholar 

  29. Cheng Z, Li Z, Li S, Gao J, Si J, Das HS, Dong W (2020) A novel cascaded control to improve stability and inertia of parallel buck-boost converters in DC microgrid. Int J Electr Power Energy Syst 119:105950. https://doi.org/10.1016/j.ijepes.2020.105950

    Article  Google Scholar 

  30. Kavitha MK, Kavitha A (2019) Nonlinear analysis of hysteretic modulation-based sliding mode controlled quadratic buck–boost converter. J Circ Syst Comput 28(02):1950025. https://doi.org/10.1142/S0218126619500257

    Article  Google Scholar 

  31. Licea MAR, Pinal FJP, Gutierrez AIB, Ramírez CAH, Perez JCN (2018) A reconfigurable buck, boost, and buck-boost converter: unified model and robust controller. Math Prob Eng 2018

  32. Kushwaha R, Sahay K (2020) Notice of Violation of IEEE Publication Principles: Bidirectional Converters Topologies, Control Techniques and Switching Strategies: An Overview. In: 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), 2020, pp. 531–537, https://doi.org/10.1109/ICIMIA48430.2020.9074865.

  33. Ahmad J, Zaid M, Sarwar A, Lin CH, Ahmad S, Sharaf M, Firdausi M (2020) A voltage multiplier circuit based quadratic boost converter for energy storage application. Appl Sci 10(22):8254. https://doi.org/10.3390/app10228254

    Article  Google Scholar 

  34. Li G, ** X, Chen X, Mu X (2020) A novel quadratic boost converter with low inductor currents. CPSS Trans Power Electr Appl 5(1):1–10

    Article  Google Scholar 

  35. Rezaie M, Abbasi V (2020) Effective combination of quadratic boost converter with voltage multiplier cell to increase voltage gain. IET Power Electronics 13:2322–2333. https://doi.org/10.1049/iet-pel.2019.1070

    Article  Google Scholar 

  36. Wang F (2017) A novel quadratic Boost converter with low current and voltage stress on power switch for fuel-cell system applications. Renew Energy. https://doi.org/10.1016/j.renene.2017.08.032

    Article  Google Scholar 

  37. Ahmad J, Zaid M, Sarwar A, Lin CH, Asim M, Yadav RK, Alamri B (2021) A new high-gain DC-DC converter with continuous input current for DC microgrid applications. Energies 14(9):2629. https://doi.org/10.3390/en14092629

    Article  Google Scholar 

  38. Nguyen M, Duong T, Lim Y (2018) Switched-capacitor-based dual-switch high-boost DC–DC converter. IEEE Trans Power Electron 33(5):4181–4189. https://doi.org/10.1109/TPEL.2017.2719040

    Article  Google Scholar 

  39. Lee S, Do H (2019) Quadratic boost DC–DC converter with high voltage gain and reduced voltage stresses. IEEE Trans Power Electron 34(3):2397–2404. https://doi.org/10.1109/TPEL.2018.2842051

    Article  Google Scholar 

  40. Chavoshipour Heris P, Saadatizadeh Z, Sabahi M, Babaei E (2019) A new switched-capacitor/switched-inductor–based converter with high voltage gain and low voltage stress on switches. Int J Circ Theor Appl 47:591–611. https://doi.org/10.1002/cta.2606

    Article  Google Scholar 

  41. Padmavathi P, Natarajan S (2020) Single switch quasi Z-source based high voltage gain DC-DC converter. Int Trans Electr Energ Syst 30:e12399. https://doi.org/10.1002/2050-7038.12399

    Article  Google Scholar 

  42. Chen J, Ding K, Zhong Y, Deng F, Abulanwar S (2020) A double input-parallel-output-series hybrid switched-capacitor boost converter. Chin J Electr Eng 6(4):15–27

    Article  Google Scholar 

  43. Faridpak B, Bayat M, Nasiri M, Samanbakhsh R, Farrokhifar M (2021) Improved hybrid switched inductor/switched capacitor DC–DC converters. IEEE Trans Power Electron 36(3):3053–3062. https://doi.org/10.1109/TPEL.2020.3014278

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davut Ertekin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekin, H., Bulut, K. & Ertekin, D. A novel switched-capacitor and fuzzy logic-based quadratic boost converter with mitigated voltage stress, applicable for DC micro-grid. Electr Eng 104, 4391–4413 (2022). https://doi.org/10.1007/s00202-022-01631-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-022-01631-3

Keywords

Navigation