Log in

Magneto-Hydro-Dynamic Generator with Joule Heating and Viscous Dissipation: An Analytic Investigation of Mixed Convection Flow

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study investigates mixed convection heat transfer in the vertical channel of magneto-hydro-dynamic (MHD) generators, considering the effects of magnetic fields, Joule heating, and viscous dissipation. The key objectives are to derive an accurate analytical solution for the complex non-linear heat transfer equations and provide insights into optimizing MHD generator design. An innovative mathematical approach involving differential transforms and power series expansions is utilized to solve the coupled partial differential equations. Validation is conducted by comparing results to existing numerical and analytical research. Parametric analysis of dimensionless quantities reveals that increasing the Hartmann number enhances fluid velocity in the channel core but suppresses temperature near the walls due to the magnetic dam** effect. Higher Λ (ratio of buoyancy forces to viscous forces) values decrease both velocity and temperature profiles. The magnetic field effectively regulates flow and thermal behavior. Joule heating power rises with a higher Hartmann number but declines as Λ increases due to heightened viscous dissipation. These outcomes elucidate the impacts of critical parameters on heat transfer characteristics and performance. The robust analytical approach and findings pave the pathway for the optimized design of efficient MHD generators. Further work can examine additional configurations and parametric effects to deepen understanding of magneto-hydrodynamic mixed convection phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(\Lambda\) :

Ratio of buoyancy forces to viscous forces

\(\mathop{B}\limits^{\rightharpoonup}\) :

Magnetic induction field (T)

\(B\) :

Modulus of \(\mathop{B}\limits^{\rightharpoonup}\) (T)

\(\vec{E}\) :

Induced electric field (V/m)

\(\vec{f}\) :

Magnetic body force (N/m3)

\(\vec{g}\) :

Acceleration due to the gravity (m/s2)

\(g\) :

Modulus of \(\vec{g}\) (m/s2)

\({\text{Gr}}\) :

Grashof number (-)

\(\vec{J}\) :

Current density (A/m2)

\(k\) :

Thermal conductivity of the fluid (W/m K)

\(L\) :

Channel width (m)

\({\text{M}}\) :

Hartmann number (-)

\(P\) :

Hydrodynamic pressure (Pa)

\(q_{{\text{g}}}\) :

Power generated per unit volume (W/m3)

\({\text{Re}}\) :

Reynolds number (-)

\(T\) :

Temperature (K)

\(T_{{\text{W}}}\) :

Wall temperature (K)

\(T_{{{\text{ref}}}}\) :

Reference temperature (K)

\(u\) :

Dimensionless velocity (-)

\(\vec{U}\) :

Velocity (m/s)

\(U\) :

Vertical velocity component (m/s)

\(U_{{\text{r}}}\) :

Reference velocity (m/s)

\(X\) :

Vertical Cartesian coordinate (m)

\(Y\) :

Horizontal Cartesian coordinate (m)

\(y\) :

Dimensionless coordinate (-)

\(\phi\) :

Dimensionless flux (-)

\(\mu\) :

Dynamic viscosity (Pa s)

\(\nu\) :

Kinematic viscosity (m2/s)

\(\theta\) :

Dimensionless temperature (-)

\(\rho\) :

Mass density (kg/m3)

\(\sigma\) :

Electric conductivity (S/m)

\({\text{JH}}\) :

Joule heating (W/m3)

\({\text{VD}}\) :

Viscous dissipation (W/m3)

References

  1. Barletta, A.: Effect of viscous dissipation in laminar forced convection within ducts. Int. J. Heat Mass Transf. 41(13), 3501–3511 (1998)

    Article  Google Scholar 

  2. Pan, Y.; Li, B.Q.: Effect of magnetic fields on oscillating mixed convection. Int. J. Heat Mass Transf. 41(16), 2705–2716 (1998)

    Article  Google Scholar 

  3. Al-Khawaja, M.J.; Agarwal, R.K.; Gardner, R.A.: Numerical study of magnetofluid-mechanic combined free-and-forced convection heat transfer. Int. J. Heat Mass Transf. 42(3), 467–474 (1999)

    Article  Google Scholar 

  4. Barletta, A.: Laminar convection in a vertical channel with viscous dissipation and buoyancy effects. Int. Commun. Heat Mass Transf. 26(2), 153–160 (1999)

    Article  Google Scholar 

  5. Burr, U.; Müller, U.: Rayleigh–Bénard convection in liquid metal layers under the influence of a vertical magnetic field. Phys. Fluids 13(11), 3247–3257 (2001)

    Article  Google Scholar 

  6. Barletta, A.; Magyari, E.; Keller, B.: Dual mixed convection flows in a vertical channel. Int. J. Heat Mass Transf. 48(25–26), 4835–4845 (2005)

    Article  Google Scholar 

  7. Umawathi, J.C.; Malashetty, M.S.: Magneto-hydrodynamic mixed convection in a vertical channel. Int. J. Non Linear Mech. 40(2–3), 91–98 (2005)

    Article  Google Scholar 

  8. Sposito, G.; Ciofalo, M.: One-dimensional mixed MHD convection. Int. J. Heat Mass Transf. 49(23–24), 2939–2947 (2006)

    Article  Google Scholar 

  9. Hazeem, A.: Influence of temperature-dependent viscosity on the MHD Couette flow of dusty fluid with heat transfer. Differ. Equ. Nonlinear Mech. 2006, 63415 (2006)

    MathSciNet  Google Scholar 

  10. Alim, M.A., Alam, M.M., Chowedburry, M.K.: Pressure work and viscous dissipation effects on mhd natural convection flow along a sphere. In: Proceedings of the 2007 International Conference of Mechanical Engineering (2007)

  11. Ishak, A.; Nazar, R.; Pop, I.: Mixed convection boundary layer flow over a vertical surface embedded in a thermally stratified porous medium. Phys. Lett. A 372(23), 2355–2363 (2008)

    Article  Google Scholar 

  12. Bég, O.A.; Zueco, J.; Takhar, S.H.: Laminar free convection from a continuously moving vertical surface in thermally stratified non-Darcian high-porosity medium: network numerical study. Int. Commun. Heat Mass Transf. 35(7), 810–816 (2008)

    Article  Google Scholar 

  13. Barletta, A.; Celli, M.: Mixed convection MHD flow in a vertical channel: effects of joule heating and viscous dissipation. Int. J. Heat Mass Transf. 51(25–26), 6110–6119 (2008)

    Article  Google Scholar 

  14. Farzaneh-Gord, M.; Joneidi, A.A.; Haghighi, B.: Investigating the effects of the important parameters on MHD flow and heat transfer over a stretching sheet. J. Mech. Eng. 10(4), 258–265 (2009)

    Google Scholar 

  15. Renuka, K.; Rao, A.: Finite difference solution of unsteady MHD free convective mass transfer flow past an infinite, vertical porous plate with variable suction and Soret effect. Int. J. Pet. Sci. Technol. 3(1), 43–58 (2009)

    Google Scholar 

  16. Saleh, H.; Hashim, I.: Flow reversal of fully-developed mixed MHD convection in vertical channels. Chin. Phys. Lett. 27, 014703 (2010)

    Article  Google Scholar 

  17. Khaleque, S.T.; Samad, M.A.: Effects of radiation, heat generation and viscous dissipation on MHD free convection flow along a stretching sheet. Res. J. Appl. Sci. Eng. Technol. 4(2), 98–105 (2010)

    Google Scholar 

  18. Anjali, S.P.; Ganga, B.: Dissipation effects on MHD nonlinear flow and heat transfer past a porous surface with prescribed heat flux. J. Appl. Fluid Mech. 3(1), 1–10 (2010)

    Google Scholar 

  19. Hayat, T.; Mustafa, M.; Pop, I.: Heat and mass transfer for Soret and Dufour’s effects on mixed convection boundary layer flow over a stretching vertical surface in a porous medium filled with a viscoelastic fluid. Commun. Nonlinear Sci. Numer. Simul. 15(5), 1183–1196 (2010)

    Article  MathSciNet  Google Scholar 

  20. Soleimani, S.; Sheikholeslami, M.; Ganji, D.D.; Gorji-Bandpay, M.: Natural convection heat transfer in a nanofluid filled semi-annulus enclosure. Int. Commun. Heat Mass Transf. 39(4), 565–572 (2012)

    Article  Google Scholar 

  21. Chin, L.C.; Cheng, L.Y.: Numerical analysis of entropy generation in mixed-convection MHD flow in vertical channel. Int. Commun. Heat Mass Transf. 39(9), 1354–1360 (2012)

    Article  Google Scholar 

  22. Bhattacharyya, K.; Mukhopadhyay, S.; Layek, G.C.: Similarity solution of mixed convective boundary layer slip flow over vertical plate. Ain Shams Eng. J. 4(2), 299–304 (2013)

    Article  Google Scholar 

  23. Hayat, T.; Ali, S.; Awais, M.; Athuthali, S.M.: Newtonian heating in stagnation point flow of Burgers’ fluid. Appl. Math. Mech. 36(1), 61–70 (2015)

    Article  MathSciNet  Google Scholar 

  24. Awais, M.; Hayat, T.; Alsaedi, A.: Investigation of heat transfer in flow of burgers fluid during a melting process. J. Egypt. Math. Soc. 23(2), 410–415 (2015)

    Article  MathSciNet  Google Scholar 

  25. Hayat, T.; Asad, S.; Alaseadi, A.: MHD mixed convection flow of Burgers’ fluid in a thermally stratified medium. J. Aerosp. Eng. 29, 04016048 (2016)

    Article  Google Scholar 

  26. Bakier, A.Y.; Rashad, A.M.; Mansour, M.A.: Group method analysis of melting effect on MHD mixed convection flow from radiate vertical plate embedded in a saturated porous media. Commun. Nonlinear Sci. Numer. Simul. 14(5), 2160–2170 (2009)

    Article  MathSciNet  Google Scholar 

  27. Rashad, A.M.: Heat and mass transfer in transient flow by mixed convection boundary layer over a stretching sheet embedded in a porous medium with chemically reactive species. J. Porous Media 13(1), 75–85 (2010)

    Article  Google Scholar 

  28. Rashad, A.M.; Bakier, A.Y.; Gorla, R.S.R.: Viscous dissipation and Ohmic heating effects on magneto-hydrodynamic mixed convection along a vertical moving surface embedded in a fluid-saturated porous medium. J. Porous Media 13(2), 159–170 (2010)

    Article  Google Scholar 

  29. Chamkha, A.J.; Rashad, A.M.: Unsteady heat and mass transfer by MHD mixed convection flow from a rotating vertical cone with chemical reaction and Soret and Dufour effects. Can. J. Chem. Eng. 91(9), 1545–1557 (2013)

    Google Scholar 

  30. Alharbi, S.O.; Khan, U.; Zaib, A.; Ishak, A.; Raizah, Z.; Eldin, S.M.; Pop, I.: Heat transfer analysis of buoyancy opposing radiated flow of alumina nanoparticles scattered in water-based fluid past a vertical cylinder. Sci. Rep. 11, 10999 (2021)

    Google Scholar 

  31. Khan, U.; Zaib, A.; Ishak, A.; Sherif, E.-S.M.; Sarris, I.E.; Eldin, S.M.; Pop, I.: Analysis of assisting and opposing flows of the Eyring-Powell fluid on the wall jet nanoparticles with significant impacts of irregular heat source/sink. Case Stud. Therm. Eng. 25, 100866 (2021)

    Google Scholar 

  32. Khan, U.; Zaib, A.; Madhukesh, J.K.; Elattar, S.; Eldin, S.M.; Ishak, A.; Raizah, Z.; Waini, I.: Features of radiative mixed convective heat transfer on the slip flow of nanofluid past a stretching bended sheet with activation energy and binary reaction. Energies 14, 7338 (2021)

    Google Scholar 

  33. Khan, U.; Zaib, A.; Ishak, A.; Eldin, S.M.; Alotaibi, A.M.; Raizah, Z.; Waini, I.; Elattar, S.; Abed, A.M.: Features of hybridized AA7072 and AA7075 alloys nanomaterials with melting heat transfer past a movable cylinder with Thompson and Troian slip effect. Arab. J. Chem. 16, 104503 (2023)

    Article  Google Scholar 

  34. Hassan, I.H.; Halim, A.; Ertürk, V.: Applying differential transformation method to. Int. J. Contemp. Math. Sci. 14, 30 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Babaelahi.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaelahi, M., Sadri, S. Magneto-Hydro-Dynamic Generator with Joule Heating and Viscous Dissipation: An Analytic Investigation of Mixed Convection Flow. Arab J Sci Eng 49, 11445–11455 (2024). https://doi.org/10.1007/s13369-023-08693-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08693-w

Keywords

Navigation