Log in

Nonlinear-Mixed Convection Flow with Variable Thermal Conductivity Impacted by Asymmetric/Symmetric Heating/Cooling Conditions

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The current article investigates the effects of nonlinear mixed convection flow in an upright channel with asymmetric or symmetric heating and cooling conditions, considering the influence of temperature-dependent thermal conductivity. The momentum equation is approximated using the nonlinear Boussinesq approximation in the buoyancy force term. Computational solutions for the dimensionless partial differential equations are obtained through the use of an unconditionally stable and convergent implicit finite difference technique. A regular perturbation series approach is employed to ascertain steady-state solutions, facilitating the assessment of the correctness of the numerical approach. During the numerical computing process, it is observed that the nonlinearity in density variation with temperature, along with the mixed convection parameter and the symmetric or asymmetric heating and cooling of the plates, significantly influences flow generation. It is also noted that in the scenario of asymmetric heating, fluid motion is stronger at the bottom plate, whereas in the case of symmetric heating/cooling settings, the highest velocity is observed in the center of the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cheng, C.H.; Kou, H.S.; Huang, W.H.: Flow reversal and heat transfer of fully developed mixed convection in vertical channels. J. Thermophys. 4, 375–383 (1990)

    Article  ADS  Google Scholar 

  2. Chutia, M.; Deka, P.N.: Numerical study on MHD mixed convection flow in a vertical insulated square duct with strong transverse magnetic field. J. Appl. Fluid Mech. 8, 473–481 (2015)

    Article  Google Scholar 

  3. Umavathi, J.C.; Sheremet, M.A.: Mixed convection flow of an electrically conducting fluid in a vertical channel using Robin boundary conditions with heat source/sink. Eur. J. Mech. B/fluds 55(1), 132–145 (2016). https://doi.org/10.1016/j.euromechflu.2015.08.0130997-7546/a2015

    Article  ADS  MathSciNet  Google Scholar 

  4. Umavathi, J.C.; Buonomo, B.; Manca, C.; Sheremet, M.A.: Heat transfer of chemically reacting mixed convection fluid using convective surface condition: Non-Darcy model. Thermal Sci. Eng. Progress (2021). https://doi.org/10.1016/1sep.2021.101044

    Article  Google Scholar 

  5. Singh, N.; Khandelwal, M.K.: Magnetohydrodynamic mixed convection flow in a vertical channel filled with porous media. Front. Indust. Appl. Math. 410, 333–345 (2021). https://doi.org/10.1007/978-981-19-7272-024

    Article  MathSciNet  Google Scholar 

  6. Alawee, W.H.; Al-Sumaily, G.F.; Dhahad, H.A.; Thompson, M.C.: Numerical analysis of non-Darcian mixed convection flows in a ventilated enclosure filled with a fluid saturated porous medium. Thermal Sci. Eng Progress (2021). https://doi.org/10.1016/j.1sep.2021.100922

    Article  Google Scholar 

  7. Singh, N.; Khandelwal, M.K.; Sharma, A.K.: Magnetohydrodynamic mixed convection flow of liquid metals in a vertical channel: A stability Analysis. Int. J. Mech. Sci. (2022). https://doi.org/10.1016/j.ijmec.sci.2022.107657

    Article  Google Scholar 

  8. Rasel, Md.S.; Rupam, Md.T.I.; Shuvo, Md.S.; Saha, S.: Investigation on conjugate mixed convection through a vented chamber with heat generating and conducting rotating circular cylinders. Results Eng. (2023). https://doi.org/10.1016/j.rineng.2023.101248

    Article  Google Scholar 

  9. Al-Omar, S.O.O.; Ali, O.M.: Mixed convection from two horizontally aligned hot and cold circular cylinders in a vented square enclosure. Ain Shams Eng. J. (2023). https://doi.org/10.1016/j.asej.2022.102048

    Article  Google Scholar 

  10. Chamran, S.; Ferroudj, N.; Koten, H.; Boudebous, S.: Mixed convection heat transfer and entropy generation in a water-filled square cavity partially heated from below: The effects of Richardson and Prandtl numbers. J. Appl. Comput. Mech. (2022). https://doi.org/10.22055/JACM2021.38614.3259

    Article  Google Scholar 

  11. Shahid, H.; Yaqoob, I.; Khan, W.A.; Rafique, A.: Mixed convection in an isosceles right triangular lid driven cavity using multi relaxation time lattice Boltzmann method. Int. Commun. Heat Mass Transfer (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105552

    Article  Google Scholar 

  12. Cui, H.; An, H.; Wang, W.; Han, Z.; Hu, B.; Xu, F.; Liu, Q.; Saha, S.C.: Numerical study of mixed convection and heat transfer in Arc-shaped cavity with inner heat sources. Appl. Sci. (2023). https://doi.org/10.3390/app13021029

    Article  Google Scholar 

  13. Issakhov, A.; Zhandaulet, Y.; Abylkassyomova, A.; Sakypbekova, M.; Issakhov, A.: Mixed convection in a channel with buoyancy force over backward and forward facing steps: The effects of inclination and geometry. Case Stud, Thermal Eng, (2021). https://doi.org/10.1016/j.csite.2021.101152

    Article  Google Scholar 

  14. Abdullah, M.M.; Albarqi, H.B.; Malekshah, E.H.; Sharifpur, M.: Thermal and hydrodynamic study of mixed convection heat transfer of a nanofluid in an enclosure with unequal-sized baffles using the lattice Boltzmann method. Eng. Anal. Boundary Element (2023). https://doi.org/10.1016/j.enganaboun.2023.05.022

    Article  MathSciNet  Google Scholar 

  15. Xu, H.; Pop, I.: Fully developed mixed convection flow in a vertical channel filled with nanofluids. Int. Commun. Heat Mass Transfer 39, 1086–1092 (2012). https://doi.org/10.1016/j.cheatmasstransfer.2012.06.003

    Article  CAS  Google Scholar 

  16. Patil, P.M.; Benawadi, S.; Tonannavar, J.R.; Shanker, B.: Homogeneous and heterogeneous reactions in the mixed convection flow of hybrid nanofluid over a slender cylinder. Asia-pacific J. Chem. Eng. (2022). https://doi.org/10.1002/apj.2740

    Article  Google Scholar 

  17. Shamshuddin, M.D.; Salawu, O.; Anwar, B.; Kadir, A.; Beg, T.A.: Computation of reactive mixed convection radiative viscoelastic nanofluid thermo-solutal transport from a stretching sheet with joule heating. Int. J. Model. Simul. 42(6), 1005–1029 (2022). https://doi.org/10.1080/02286203.2021.20/2635

    Article  Google Scholar 

  18. Nasir, M.; Wagas, M.; Beg, O.A.; Zamri, N.: Homotopy analysis of mixed convection flow of a magnetized viscoelastic nanofluid from a stretching surface in non-Darcy porous media with revised Fourier and Fickian approaches. Waves Random and Complex Media (2022). https://doi.org/10.1080/17455030.2023.21788824

    Article  Google Scholar 

  19. Nadeem, S.; Ahmad, S.; Kha, M.N.: Mixed convection flow of hybrid nanoparticle along a Riga surface with Thomson and Troian slip condition. J. Thermal Anal. Calorim. (2021). https://doi.org/10.1007/s10973-020-09747-2

    Article  Google Scholar 

  20. Elsaid, E.M.; Abdel-wahed, M.S.: Mixed convection hybrid-nanofluid in a vertical channel under the effect of thermal radiative flux. Cas Stud. Thermal Eng. (2021). https://doi.org/10.1016/j.csite.2021.100913

    Article  Google Scholar 

  21. Jasim, L.M.; Hamzah, H.; Canpolat, C.; Sahin, B.: Mixed convection flow of hybrid nanofluid through a vented enclosure with inner rotating cylinder. Int. Commun. Heat Mass Transfer (2021). https://doi.org/10.1016/j.icheatmasstransfer.2020.105086

    Article  Google Scholar 

  22. Mamun, M.A.H.; Prince, H.A.; Siam, Md.M.H.: Variations of MHD double-diffusive mixed convection and entropy generation in various nanofluids and hybrid nanofluids due to the deviation of the spinning of double rotating cylinder. Int. J. Thermofluids (2023). https://doi.org/10.1016/j.ijft.2023.100421

    Article  Google Scholar 

  23. Uddin, M.J.; Al-Balushi, J.; Mahatabuddin, S.; Rahman, M.M.: Convective heat transport for copper oxide-water nanofluid in an isosceles triangular cavity with a rippled base wall in the presence of magnetic field. Int. J. Thermofluids (2022). https://doi.org/10.1016/j.ijft.2022.100195

    Article  Google Scholar 

  24. Ruvo, T.H.; Saha, S.; Mojumder, S.; Saha, S.: Mixed convection in an open T-shaped cavity utilizing the effect of different inflow conditions with Al2O3-water nanofluid flow. Results Eng. (2023). https://doi.org/10.1016/j.rineng.2022.100862

    Article  Google Scholar 

  25. Ahmed, S.E.; Raizah, Z.A.S.; Chamkha, A.J.: Mixed convective transport in inclined porous open arc-shaped enclosures saturated by nanofluids using a second-order Boussinesq Approximation. Cas Stud. Thermal Eng. (2021). https://doi.org/10.1016/j.csite.2021.101295

    Article  Google Scholar 

  26. Ghaneifar, M.; Raisi, A.; Ali, M.H.; Talebizadehsardari, P.: Mixed convection heat transfer of Al2O3 nanofluid in a horizontal channel subjected with two heat sources. J. Thermal Anal. Calorim. (2021). https://doi.org/10.1007/s10973-020-09887-2

    Article  Google Scholar 

  27. Armaghani, T.; Sadeghi, M.S.; Rashad, A.M.; Mansour, M.A.; Chamkha, A.J.; Dogonchi, A.S.; Nabwey, H.A.: MHD mixed convection of localized heat source/sink in an Al2O3-cu/water hybrid nanofluid in L-shaped cavity. Alexandria Eng. J. (2021). https://doi.org/10.1016/j.aej.2021.01.031

    Article  Google Scholar 

  28. Pandey, A.K.; Bhattacharyya, K.; Gautan, A.K.; Rajput, S.; Mandal, M.S.; Chamkha, A.J.; Yadav, D.: Insight into the relationship between non-linear mixed convection and thermal radiation: the case of Newtonian fluid flow due to non-linear stretching. Propulsion and Power Res. 12(1), 153–165 (2023). https://doi.org/10.1016/j.jppr.2023.11.002

    Article  Google Scholar 

  29. **a, W.F.; Ahmad, S.; Khan, M.N.; Ahmad, H.; Rehman, A.; Baili, J.; Gia, T.N.: Heat and mass transfer analysis of nonlinear mixed convective hybrid nanofluid flow with multiple slip boundary conditions. Case Stud. n Thermal Eng. 32, 1–15 (2022). https://doi.org/10.1016/j.csite.2022.101893

    Article  Google Scholar 

  30. Ahmad, I.; Faisal, M.; Loganathan, K.; Kiyani, M.Z.; Namgyel, N.: Nonlinear mixed convective Bidirectional dynamics of double stratified radiative Oldroyd-B nanofluid flow with heat source/sink and higher-order chemical reaction. Math. Problem Eng. (2022). https://doi.org/10.1155/2022/9732083

    Article  Google Scholar 

  31. Rana, P.; Gupta, G.: Heat transfer optimization of nonlinear mixed convection nanoliquid past a vertical rotating cone with Stefan blowing using response surface method. Waves in Random and Complex Media (2023). https://doi.org/10.1080/17455030.2023.2195505

    Article  Google Scholar 

  32. Patil, P.M.; Kulkarni, M.: A numerical study on MHD double diffusive nonlinear mixed convective nanofluid flow around a vertical wedge with diffusion of liquid hydrogen. J. Egyptian Math. Soc. 29(24), 2–18 (2021). https://doi.org/10.1186/s42787-021-00133-8

    Article  MathSciNet  Google Scholar 

  33. Jha, B.K.; Samaila, G.: Impact of nonlinear thermal radiation on nonlinear mixed convection flow near a vertical porous plate with convective boundary condition. J. Process Mech. Eng. 236(2), 600–608 (2021). https://doi.org/10.1177/09544089211064386

    Article  Google Scholar 

  34. Aziz, S.; Ali, S.; Ahmad, I.; Alqsair, U.F.; Khan, S.U.: Contributions of nonlinear mixed convection for enhancing the thermal efficiency of Eyring-Powell nanoparticles for periodically accelerated bidirectional flow. Waves in Random and Complex Media (2022). https://doi.org/10.1080/17455030.2021.2022812

    Article  Google Scholar 

  35. Rajput, S.; Verma, A.K.; Bhattacharyya, B.; Chamkha, A.J.: Unsteady nonlinear mixed convective flow of nanofluid over a wedge: Buongiorno model. Waves in Random and Complex Media (2021). https://doi.org/10.1080/17455030.2021.1987586

    Article  Google Scholar 

  36. Patil, P.M.; Shankar, H.F.; Hiremah, P.S.; Momoniat, E.: Nonlinear mixed convective nanofluid flow about a rough sphere with the diffusion of liquid hydrogen. Alexandria Eng. J. (2021). https://doi.org/10.1016/j.aej.2020.10.029

    Article  Google Scholar 

  37. Kumar, A.; Ray, R.K.; Sheremet, M.A.: Entropy generation on double-diffusive MHD slip flow of nanofluid over a rotating disk with nonlinear mixed convection and Arrhenius activation energy. Indian J. Phys. 96, 525–541 (2022)

    Article  ADS  CAS  Google Scholar 

  38. Malik, M.Y.; Jamil, H.; Salahuddin, T.; Bilal, S.; Rehman, K.U.; Mustafa, Z.: Mixed convection dissipative viscous fluid flow over a rotating cone by way of variable viscosity and thermal conductivity. Results Phys. 6, 1126–1135 (2016). https://doi.org/10.1016/j.rinp.2016.11.027

    Article  ADS  Google Scholar 

  39. Uwanta, I.J.; Hamza, M.M.: Unsteady flow of reactive viscous, heat generating/absorbing fluid with Soret and variable thermal conductivity. Int. J. Chem. Eng. (2014). https://doi.org/10.1155/2014/291857

    Article  Google Scholar 

  40. Hamza, M.M.; Usman, I.G.; Sule, A.: Unsteady/steady hydromagnetic convective flow between two vertical walls in the presence of variable thermal conductivity. J. Fluids (2015). https://doi.org/10.1155/2015/358053

    Article  Google Scholar 

  41. Usman, I.G.; Hamza, M.M.: Fully developed MHD mixed convection flow with temperature dependent thermal conductivity in a heated vertical channel. Katsina J. Nat. Appl. Sci. 5(1), 8–16 (2016)

    Google Scholar 

  42. Hamza, M.M.; Abubakar, A.B.; Panyanak, B.; Pakkaranang, N.: Free convection flow in a microchannel filled with porous material having temperature-dependent thermal conductivity. Math. Mech. Appl. Sci. (2022). https://doi.org/10.1002/mma.8148

    Article  Google Scholar 

  43. Ajibade, O.A.; Umar, A.M.: (2020): Mixed convection flow in a vertical channel in the presence of wall conduction, variable thermal conductivity and viscosity. Nonlinear Eng. 9, 412–431 (2020). https://doi.org/10.1515/nleng.2020.0026

    Article  ADS  Google Scholar 

  44. Boumaize, N.; Kezzar, M.; Eid, M.R.; Tabet, I.: On numerical and analytical solutions for mixed convection Falkner-Skan flow of nanofluds with variable thermal conductivity. Waves in Random and Complex Media 31(6), 1550–1569 (2019). https://doi.org/10.1080/17455030.2019.1686550

    Article  ADS  Google Scholar 

  45. Jha, B.K.; Oni, M.O.: Theory of fully developed mixed convection including flow reversal: A nonlinear Boussinesq approximation approach. Heat Transfer-Asian Res. (2019). https://doi.org/10.1002/htj.21550

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammed Murtala Hamza.

Appendix

Appendix

$$\begin{aligned} & B_{3} = - \frac{Gr}{{{\text{Re}} M^{4} }}Q_{3} ,C_{5} = - \frac{Gr}{{{\text{Re}} M^{2} }}2k_{2},\\ & C_{6} = \frac{Gr}{{{\text{Re}} M^{2} }}\left[ {k_{1} + k_{2} + \frac{{12k_{2} }}{{M^{2} }}} \right],C_{7} = \frac{Gr}{{{\text{Re}} M^{2} }}Q_{2} \\ & k_{1} + \frac{{6k_{1} }}{{M^{2} }} + \frac{{6k_{2} }}{{M^{2} }} + \frac{{72k_{2} }}{{M^{4} }} = Q_{2} ,C_{8} = \frac{Gr}{{{\text{Re}} M^{4} }}Q_{3},\\ & C_{4} = \frac{Gr}{{{\text{Re}} M^{2} }}K_{2} ,k_{1} = \frac{{\left( {R - 1} \right)^{2} }}{2},k_{2} = N\frac{{\left( {R - 1} \right)^{4} }}{4} \end{aligned}$$
$$\begin{aligned} & B_{4} = \frac{Gr}{{{\text{Re}} M^{2} }}\left[ {\frac{{\left[ {\frac{{Q_{3} }}{{M^{4} }}} \right]\left[ {\cosh \left( m \right) - 1} \right] + k_{2} - Q_{1} - Q_{2} }}{\sinh \left( m \right)}} \right],\\ & B_{2} = \frac{Gr}{{{\text{Re}} m^{2} }}f_{4} + \frac{\xi }{{m^{2} }}f_{5} ,\frac{dP}{{dx}} = \xi \\ & f_{3} = 2N(R - 1)^{2} + m^{2} N + m^{2},\\ & \boxed{C_{3} = \frac{Gr}{{{\text{Re}} m^{4} }}\left[ {2N(R - 1)^{2} + m^{2} N + m^{2} } \right] - \frac{\xi }{{m^{2} }}} \end{aligned}$$
$$\begin{aligned} & let,f_{4} = \frac{{\frac{{f_{3} \cosh (m)}}{{m^{2} }} - f_{1} - f_{2} - f_{3} }}{\sinh (m)},f_{5} = \frac{1 - \cosh (m)}{{\sinh (m)}},\\ & B_{1} = - \frac{Gr}{{{\text{Re}} m^{4} }}f_{3} + \frac{\xi }{{m^{2} }},C_{3} = \frac{Gr}{{{\text{Re}} m^{4} }}f_{3} - \frac{\xi }{{m^{2} }}\end{aligned}$$
$$C_{1} = \frac{{GrN(R - 1)^{2} }}{{{\text{Re}} m^{2} }},C_{2} = \frac{Gr(R - 1)}{{\text{Re}}}\left[ {1 + 2N} \right]$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamza, M.M., Suleiman, B.A., Ahmad, S.KK. et al. Nonlinear-Mixed Convection Flow with Variable Thermal Conductivity Impacted by Asymmetric/Symmetric Heating/Cooling Conditions. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08757-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08757-5

Keywords

Navigation