Log in

A mixed finite element approach for a factional viscoelastic wave propagation in-time-domain

  • Original Research
  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present a numerical approximation of fractional order viscoelastic wave equation in the 2D case. These viscoelastic models are shown to be effective in modeling wave attenuation, in particular the Q-factor approximation, when previously shown in our work [1]. The novelty of this study is the numerical simulation of the propagation of viscoelastic waves with the fractional Zener model in the space-time domain, moreover, we use real data. For the numerical resolution, we used a mixed finite element method. This method combines the mass lum** with centered explicit scheme for time discretization. For the resulting scheme, we prove a discrete energy decay result and provide a sufficient stability condition. Various numerical results are presented for the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.A. Ichou, H.E. Amri, A. Ezziani., Fractional viscoelastic wave attenuation modeling. Pure and Applied Geophysics 179, 1089–1102 (2022)

  2. F. Mainardi, Fractional calculus. Springer Vienna 378, 291–348 (1997)

  3. H. Haddar, J.R. Li, D. Matignon, Efficient solution of a wave equation with fractional-order-dissipative terms. Journal of Computational and Applied Mathematics 234, 2003–2010 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Nicole, J.C. Bauwens, Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheologica Acta 33, 210-219 (1994)

    Article  Google Scholar 

  5. F. Mainardi, R. Gorenflo, Time-fractional derivatives in relaxation processes: a tu- torial survey. Fractional Calculus and Applied Analysis 10, 269-308 (2007)

    MathSciNet  MATH  Google Scholar 

  6. R. Metalert, H. Shiessel, A. Blument, T.F. Nonnemachert, Generalized viscoelastic models: Their fractional equation with solution. Journal of Physics A: Mathematical and General 28, 6567–6584 (1995)

    Article  Google Scholar 

  7. F. Mainardi, (Imperial College Pres, 2010)

  8. X.S. Yang, A note on solitary waves in viscoelastic porous media. Chaos, Solitons and Fractals 12(12), 2353–2356 (2001)

    Article  MATH  Google Scholar 

  9. L. Xu, G. Stewart, Fitting viscoelastic mechanical models to seismic attenuation and velocity dispersion observations and applications to full waveform modelling. Geophysical Journal International 219, 1741–1756 (2019)

    Article  Google Scholar 

  10. J.M. Carcione, F. Cavallini, F. Mainardi, A. Hanyga, Time–domain modeling of constant-Q seismic waves using fractional derivatives. Pure Appl. Geophys. 159, 1719–1736 (2002)

  11. E. Blanc, Time-domain numerical modeling of poroelastic waves: the biot-jkd model with fractional derivatives. Ph.D. thesis, Aix-Marseille Université (2013)

  12. S. Asvadurov, L. Knizhnerman, J. Pabon, Finite-difference modeling of viscoelastic materials with quality factors of arbitrary magnitude. Geophysic 69, 817-824 (2004)

    Article  Google Scholar 

  13. M. Caputo, F. Mainardi, A new dissipation model based on memory mechanism. Pure and Applied Geophysics 91, 134–147 (1971)

    Article  MATH  Google Scholar 

  14. M.A. Ichou, H.E. Amri, A. Ezziani., Mathematical modeling of wave propagation in viscoelastic media with the fractional zener model. Mathematical Modeling and Computing 8, 601-615 (2021)

  15. A.B. C. Gélis, D. Leparoux, S. Operto, Numerical modeling of surface waves over shallow cavities. J. Environ. Engin. Geophys. 10, 49–59 (2005)

    Article  Google Scholar 

  16. C. Bastard, Elastographie impulsionnelle quantitative : caractérisation des propriétés viscoélastiques des tissus et application à la mesure de contact. Theses, Université François Rabelais de Tours (2009). https://tel.archives-ouvertes.fr/tel-01143927

  17. K. Bert, Etude expérimentale et modélisation du comportement en fatigue multiaxiale d’un polymère renforcé pour application automobile. Theses, ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d’Aérotechique - Poitiers (2009). https://tel.archives-ouvertes.fr/tel-00464186

  18. S. Jean, Viscoélasticité pour le calcul des structures (Éditions de l’École polytechnique, Palaiseau & Presses des Ponts et Chaussées, Paris, 2009), p. 151. https://hal.archives-ouvertes.fr/hal-00870155

  19. E. Bécache, A. Ezziani, P. Joly, A mixed finite element approach for viscoelastic wave propagation. Computational Geosciences 8, 255–299 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Konjik, L. Oparnica, D. Zorica, Waves in fractional zener type viscoelastic media. Journal of Mathematical Analysis and Applications 365, 259 – 268 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Blanc, D. Komatitsch, E. Chaljub, B. Lombard, Z. **e, Highly-accurate stability-preserving optimization of the zener viscoelastic model, with application to wave propagation in the presence of strong attenuation. Geophysical Journal International 205, 427–439 (2016)

    Article  Google Scholar 

  22. P. Moczo, J. Kristek, On the rheological models used for time–domain methods of seismic wave propagation. Geophysical research 32, 1–5 (2005)

  23. P.J. E. Bécache, C. Tsogka, A new family of mixed finite elements for the linear elastodynamic problem. SIAM J. Numer. Anal. 36, 2109-2132 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. N. Fan, Z. Lianfeng, X. **ao-Bi, G. Zengxi, Y. Zhen-**ng, Two-dimensional time-domain finite-difference modeling for viscoelastic seismic wave propagation. Geophysical Journal International 206, 1539–1551 (2016)

    Article  Google Scholar 

  25. B.S. E. Afshari, A.Nazari, Finite difference method for solving the space-time fractional wave equation in the caputo form. Fractional Differential Calculus pp. 55–63 (2015)

  26. H.Z. H. Chen, Y. Rao, Constant-q wave propagation and compensation by pseudo-spectral time-domain methods. Computers & Geosciences 155, 104–861 (2021)

    Article  Google Scholar 

  27. H.H.L.Q. J. Yang, D. Yang, Y. Cheng, A wave propagation model with the biot and the fractional viscoelastic mechanisms. Sci. China Earth Sci 64, 364-376 (2021)

    Article  Google Scholar 

  28. H. Brezis, Analyse fonctionnelle Théorie et applications (Masson, 1984)

  29. M.A. Ichou, H.E. Amri, A. Ezziani, On existence and uniqueness of solution for space-time fractional zener model. Acta Applicandae Mathematicae 170, 593–609 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Ezziani, Modélisation mathématique et numérique de la propagation d’ondes dans les milieux viscoélastiques et poroélastiques. Ph.D. thesis, Université Paris Dauphine (2005)

  31. P. Joly, Variational methods for time-dependent wave propagation problems. In Topics in Computational Wave Propagation Direct and Inverse Problems, Computational Science and Engineering, Springer 31, 201-264 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ait Ichou.

Additional information

Communicated by K Sandeep.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ichou, M.A., Ezziani, A. A mixed finite element approach for a factional viscoelastic wave propagation in-time-domain. Indian J Pure Appl Math (2023). https://doi.org/10.1007/s13226-023-00461-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13226-023-00461-8

Keywords

Navigation