Log in

Numerical investigation of Auger current density in a InGaN/GaN multiple quantum well solar cell under hydrostatic pressure

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This study used a numerical model to analyze the Auger current in c-plane InGaN/GaN multiple-quantum well solar cells (MQWSC) under hydrostatic pressure. Finite difference techniques were employed to acquire energy eigenvalues and their corresponding eigenfunctions of \({\text{InGaN/GaN}}\) MQWSC. Besides, the hole eigenstates were calculated via a \(6 \times 6\) k.p method under applied hydrostatic pressure. Our calculations demonstrated that the hole-hole-electron (CHHS) and electron–electron-hole (CCCH) Auger coefficients had the largest contribution to the total Auger coefficient (i.e., 76 and 20%, respectively). Also, it was found that a pressure change of up to 10 GPa increases the carrier density in the quantum well and barriers. Based on the result, such a change could decrease the exciton binding energy, raise the quantum confinement of carriers, and decrease the Auger current in the multiple-quantum well and barrier regions. The solar cell’s performance is better when the Auger current is lower; thus, hydrostatic pressure plays a positive role in the performance of solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A David and N G Young Phys. Lett. 115 193502 (2019)

    Google Scholar 

  2. C K Tan, W Sun and J J Wierer AIP Advances. 7 035212 (2017)

    Article  ADS  Google Scholar 

  3. D Steiauf E Kioupakis and C G Van de Walle ACS Photonics. 1 643 (2014)

    Article  CAS  Google Scholar 

  4. D P Han, C H Oh, D G Zheng, H Kim, J I Shim, K S Kim and D S Shin Jpn. J. Appl. Phys. 54 02BA01 (2015)

  5. W Liu, C Haller, Y Chen and T Weatherley Phys. Lett. 116 222106 (2020)

    CAS  Google Scholar 

  6. E Kioupakis and P Rinke Phys. Lett. 98 161107 (2011)

    Google Scholar 

  7. J Piprek Phys. Status Solidi A. 207 2217 (2010)

  8. M Auf, G der Maur, J M Moses and X Huang Gordon Energy Mater Sol. Cells. 230 111253 (2021)

    Article  Google Scholar 

  9. J Piprek Phys. Lett. 106 101101 (2015)

    Google Scholar 

  10. H -Y Ryu, G H Ryu, C Onwukaeme and B Ma Opt. Express. 28 27459 (2020)

  11. L Cheng, Z Li, J Zhang, X Lin, D Yang and H Chen S Wu and S Yao Nanomaterials. 11 2070 (2021)

    Article  CAS  Google Scholar 

  12. S Picozzi and R Asahi Rev. Lett. 89 197601 (2002)

    Article  ADS  CAS  Google Scholar 

  13. A S Polkovnikov and G G Zegrya Phys. Rev. B. 58 4039 (1998)

    Article  ADS  CAS  Google Scholar 

  14. J Piprek Materials. 13 5174 (2020)

  15. J M McMahon Rev. B. 105 195307 (2022)

    Article  CAS  Google Scholar 

  16. B Chouchen and A T Hajjiah Phys. J. Plus. 137 1296 (2022)

    Article  CAS  Google Scholar 

  17. B Chouchen, F Ducroquet, S Nasr and A Y A Alzahrani A T Hajjiah and M H Gazzah Solar Energy Materials and Solar Cells. 234 111446 (2022)

    Article  CAS  Google Scholar 

  18. H Belmabrouk, B Chouchen, E M Feddi, F Dujardin and I Tlili M B Ayed and M H Gazzah Optik. 207 163883 (2020)

    CAS  Google Scholar 

  19. X Huang et al ACS Nano. 10 5145 (2016)

  20. B K Ridley and W J Schaff J. Appl. Phys. 9 3972 (2003)

    Article  ADS  Google Scholar 

  21. O Ambacher et al J. Phys. Condens. Matter. 14 3399 (2002)

  22. A Asgari and K Khalili Sol. Energy Mater Sol. Cells. 95 3124 (2011)

    Article  CAS  Google Scholar 

  23. V Fiorentini Appl. Phys. Lett. 80 1204 (2002)

  24. P Perlin, L Mattos, N A Shapiro, J Kruger, W S Wong and T Sands J. Appl. Phys. 85 2385 (1999)

    Article  ADS  CAS  Google Scholar 

  25. K J Bala Phys. 495 42 (2017)

    CAS  Google Scholar 

  26. S L Chuang and C S Chang Semicond. Sci. Technol. 12 252 (1997)

    Article  ADS  CAS  Google Scholar 

  27. S L Chuang and C S Chang Phys. Rev. B. 54 2491 (1996)

    Article  ADS  CAS  Google Scholar 

  28. J Piprek and S Nakamura IEE P-Optoelectron. 149 145 (2002)

    Article  CAS  Google Scholar 

  29. R Yahyazadeh J. Photonics Energy. 10 045504 (2020)

  30. A D Andrew and E O O’Reilly Appl. Phys. Lett. 84 182 (2004)

    Article  Google Scholar 

  31. J Wang and P V Allmen J. Quantum Electron. 31 864 (1995)

    Article  ADS  CAS  Google Scholar 

  32. A Asgari M Kalafi and L Faraone Physica E. 28 491 (2005)

    Article  CAS  Google Scholar 

  33. W W -Ying Chin. Phys. B. 23 117803 (2014)

  34. R Yahyazadeh Opt Quant Electron. 53 571 (2021)

  35. R Yahyazadeh and Z Hashempour J. Nanophotonics. 15 036005 (2021)

    Article  ADS  CAS  Google Scholar 

  36. S H Ha and S L Ban J. Phys. Condens. Matter. 20 085218 (2008)

    Article  ADS  Google Scholar 

  37. J G Rojas-Briseno and I Rodriguez-Vargas M E Mora-Ramos and J C Martínez-Orozco Physica E. 124 114248 (2020)

    CAS  Google Scholar 

  38. P Harrison and A Valavanis Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures (New York: John Wiley & Sons) p 192 (2016)

  39. E Kasapoglu Sci. Technol. 15 219 (2000)

    ADS  CAS  Google Scholar 

  40. J G Rojas-Briseño J C Martínez-Orozco and M E Mora-Ramos Superlattices Microstruct. 112 574 (2017)

    ADS  Google Scholar 

  41. D Watson-Parris, M J Godfrey and P Dawson Phys. Rev. B. 83 115321 (2011)

  42. B Chouchen and M H Gazzah A Bajahzar and H Belmabrouk AIP Adv. 9 045313 (2019)

    Article  Google Scholar 

  43. B Jogai J. Appl. Phys. 93 1631 (2003)

  44. B Jogai Phys. stat. sol (b). 233 506 (2002)

  45. I Vurgaftman J. Appl. Phys 89 5815 (2001)

    Article  ADS  CAS  Google Scholar 

  46. S L Rumyantsev Summary. 14 1 (2004)

    CAS  Google Scholar 

  47. S W Corzine, L Coldren and M Mashanovitch Diode Lasers and Photonic Integrated Circuits (New Jersey: John Wiley & Sons) p 657 (2012)

  48. G P Agrawal and N K Dutta Semiconductor Lasers (New York: Springer) p 448 (1993)

  49. P S Zory Quantum well lasers (Boston: Academic Press) p 62 (1993)

  50. S Adachi Physical Properties of III-V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs and InGaAsP (New York: John Wiley & Sons) p 290 (1992)

  51. E Kioupakis, D Steiauf, P Rinke, K T Delaney and C G Van de Walle Phys. Rev. B. 92 035207 (2015)

  52. V B Yekta H Kaatuzian Optik. 122 514 (2011)

    Article  CAS  Google Scholar 

  53. J Hader J. Quantum Electron. 41 1217 (2005)

    Article  ADS  CAS  Google Scholar 

  54. I H Tan and G L Snider J. Appl. Phys. 68 4071 (1990)

    Article  ADS  Google Scholar 

  55. A Laubsch, M Sabathil and J Baur M Peter and B Hahn IEEE Trans Electron Devices. 57 79 (2010)

    Article  ADS  CAS  Google Scholar 

  56. F Bertazzi, X Zhou and M Goano Phys. Lett. 103 081106 (2013)

    Google Scholar 

  57. F Bertazzi, M Goano and E Bellotti Appl. Phys. Lett. 97 231118 (2010)

  58. B Chouchen and M H Gazzah A Bajahzar and H Belmabrouk Materials. 12 1241 (2019)

    CAS  Google Scholar 

  59. M H Gazzah and B Chouchena Sci. Semicond. Process. 93 231 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajab Yahyazadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 771 kb)

Supplementary file2 (DOCX 160 kb)

Appendices

Appendix A: Numerical method

The discretization of Schrodinger and Poisson equations has been performed using the finite difference method (FDM). A centered second-order scheme is used for this purpose. Therefore, a continuous term such as \(\frac{d}{dz}\left( {f\frac{d\psi }{{dz}}} \right)\) is discretized according to [58]:

$$ \frac{d}{dz}\left( {f\frac{d\psi }{{dz}}} \right) = \frac{{\frac{{(f_{i + 1} + f_i )}}{2} \times \frac{{(\psi_{i + 1} - \psi_i )}}{\Delta z}}}{\Delta z} $$
(11)

The Schrodinger equation becomes: \(H\psi_i = E\psi_i\). The nonzero elements of the matrix H are:

$$ H(i,j) = \left\{ \begin{gathered} \frac{\hbar^2 }{{2m_0 \Delta z^2 }}\frac{1}{2}\left( {\frac{1}{m^* \left( i \right)} + \frac{1}{{m^* \left( {i - 1} \right)}}} \right)\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\,} & {\,} \\ \end{array} } & {\,} \\ \end{array} } & {\,} \\ \end{array} } & {\begin{array}{*{20}c} {if} & {j = i + 1} \\ \end{array} } \\ \end{array} \hfill \\ \frac{\hbar^2 }{{2m_0 \Delta z^2 }}\left( {\frac{1}{2}\left( {\frac{1}{m^* \left( i \right)} + \frac{1}{{m^* \left( {i - 1} \right)}}} \right) + \frac{1}{2}\left( {\frac{1}{m^* \left( i \right)} + \frac{1}{{m^* \left( {i + 1} \right)}}} \right)} \right) \hfill \\ - \frac{\hbar^2 }{{2m_0 \Delta z^2 }}\frac{1}{2}\left( {\frac{1}{m^* \left( i \right)} + \frac{1}{{m^* \left( {i + 1} \right)}}} \right)\begin{array}{*{20}c} {\begin{array}{*{20}c} {\,} & {\,} \\ \end{array} } & {\,} & {\,} & {j = i + 1} \\ \end{array} \hfill \\ \end{gathered} \right. + E_c (i)\begin{array}{*{20}c} {\,} & {j = i} \\ \end{array} $$
(12)

It is straightforward to obtain the matrix system related to the Poisson equation.

The above eigenvalues system and linear system are coupled and should be solved using an iterative method. The convergence is obtained when the difference on the Fermi level associated with two consecutive iterations is smaller than \(10^{ - 4} eV\). The boundary conditions related to the Schrodinger equation are:

$$ \psi_n (z = 0) = \psi_n (z = L) = 0\begin{array}{*{20}c} {\,} & {\,} \\ \end{array} $$
(13)

where L is the total height of the structure. The boundary conditions related to the Poisson equation are:

$$ \left. {\frac{d(V_H + V_P )}{{dz}}} \right|_{z = 0} = \left. {\frac{d(V_H + V_P )}{{dz}}} \right|_{z = L} = 0 $$
(14)

The details of the self-consistent solution of the Schrodinger–Poisson equation are as follows:

  1. 1.

    Consider the optional value for \(n_{2D}\).

  2. 2.

    Solve the Poisson equation.

  3. 3.

    Solve the Schrodinger equation and obtain the wave functions and their energy subbands.

  4. 4.

    Using the following equations and Eq. 5, the electron density and the Fermi energy are obtained as follows.

    $$ E_F = E_0 + {{(\pi \hbar^2 n_{2D} )} / {m^* }} $$
    (15)
    $$ E_0 = {{(9\pi \hbar^2 e^2 n_{2D} )} / {(8\varepsilon_0 \sqrt {8m^* } \varepsilon_{GaN} )}} $$
    (16)
  5. 1.5.

    If it is \(E_{F\left( n \right)} - E_{F\left( {n - 1} \right)} < 10^{ - 4} eV\), the self-consistent program will end; otherwise,\(E_{F\left( n \right)} - E_{F\left( {n - 1} \right)} > 10^{ - 4} eV\). Put new \({n}_{2D}\) in Schrodinger’s equation and continue the program until the condition \(E_{F\left( n \right)} - E_{F\left( {n - 1} \right)} < 10^{ - 4} eV\) is established.

The same grid mesh is used for Poisson and Schrödinger’s equation during the calculations. For mesh refinement in the numerical calculation written in the MATLAB software, commands ‘initmesh’ and ‘refinemesh’ are performed as follows in different regions of structure InGaN/GaN.

fem. mesh = initmesh (fem,'hmax',[0.05e-9],'hmaxfact',1,'hgrad',1.3, 'zscale',1.0);

fem. mesh = refinemesh (fem, ‘mcase’,0);

where there are FEM commands in solving wave functions, hmax is the maximum edge size (= 0.05e-9m), hgrad is the mesh growth rate (= 1.3), and zscale is a region to be refined.

Appendix B: Electric fields

Assuming no free charge, electric displacements at the interface between \(\left( j \right)\) th and \(\left( {j + 1} \right)\) th layers and between \(\left( {j + 1} \right)\) th and \(\left( {j + 2} \right)\) th layers can be expressed as follows [20]:

$$ \varepsilon_{j + 1} \varepsilon_0 F_{j + 1} = \varepsilon_j \varepsilon_0 F_j + P_j - P_{j + 1} $$
(17)
$$ \varepsilon_{j + 2} \varepsilon_0 F_{j + 2} = \varepsilon_{j + 1} \varepsilon_0 F_{j + 1} + P_{j + 1} - P_{j + 2} $$
(18)

Substituting from Eq. (17) gives an expression for Eq. (18):

$$ \varepsilon_{j + 2} \varepsilon_0 F_{j + 2} = \varepsilon_j \varepsilon_0 F_j + P_j - P_{j + 2} $$
(19)

where \(\varepsilon_j\) denotes the dielectric constants and \(P_j\) is the polarization in jth layer. In the following, the field in any layer is related to the field in a particular layer as:

$$ F_k = \frac{1}{\varepsilon_k \varepsilon_0 }\left( {\varepsilon_j \varepsilon_0 F_j + P_j - P_k } \right)\begin{array}{*{20}c} {\,} & {k = j + 2} \\ \end{array} $$
(20)

We focus on the case where there is no voltage difference across MQW either because thermodynamic equilibrium prevails or an applied field exists that compensates for any built-in field. The condition in which the volt value dropped across MQW is zero is as follows:

$$ \sum_k {L_k F_k } = L_j F_j + \sum_{k \ne j} {L_k F_k } $$
(21)

Here, \(L_k\) and \(L_j\) are the kth and jth layer's thickness. Substituting from Eq. (19) gives an expression for electric field in any layer:

$$ F_j = \frac{{\sum_{k \ne j} {\left( {P_k - P_j } \right)\left( {{{L_k } / {\varepsilon_k }}} \right)} }}{{\varepsilon_k \varepsilon_0 \sum_k {\left( {{{L_k } / {\varepsilon_k }}} \right)} }} $$
(22)

In the case of an MQW with only two types of layers (\(L_w\) and \(L_b\)), the fields are:

$$ F_w = \frac{{\left( {P_b - P_w } \right)L_b }}{{\varepsilon_0 \left( {\varepsilon_w L_w + \varepsilon_b L_b } \right)}},\;F_b = \frac{{\left( {P_w - P_b } \right)L_w }}{{\varepsilon_0 \left( {\varepsilon_w L_w + \varepsilon_b L_b } \right)}} = - F_w \frac{L_w }{{L_b }} $$
(23)

where the difference in polarization density is equal to surface polarization density in InGaN/GaN, which is calculated as follows [42, 59]:

$$ \sigma_b = |P_b - P_w | = |P_{In_m Ga_{(1 - m)} N}^{PZ} + P_{In_m Ga_{(1 - m)} N}^{SP} - P_{GaN}^{SP} - P_{GaN}^{PZ} | $$
(24)

where

$$ P_{GaN}^{PZ} = - 0.918 \in + 9.541 \in^2 $$
(25)
$$ P_{InN}^{PZ} = - 1.373 \in + 7.559 \in^2 $$
(26)
$$ P_{(In_m Ga_{(1 - m)} N)}^{SP} = 0.042m - 0.034(1 - m) + 0.038m(1 - m) $$
(27)
$$ P_{In_m Ga_{(1 - m)} N}^{PZ} = mP_{InN}^{PZ} + (1 - m)P_{GaN}^{PZ} $$
(29)

Here, \(\in\) is the basal strain whose relation is presented in the main text.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahyazadeh, R., Hashempour, Z. Numerical investigation of Auger current density in a InGaN/GaN multiple quantum well solar cell under hydrostatic pressure. Indian J Phys 98, 1217–1228 (2024). https://doi.org/10.1007/s12648-023-02897-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02897-4

Keywords

Navigation