Log in

Modifying the figure of merit in hybrid plasmonic waveguide for Kerr nonlinear effect

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Hybrid plasmonic waveguide (HPW) has offered the promise to combine long propagation lengths and strong modal confinement at sub-wavelength scale. All-optical signal processing can be achieved by relying on nonlinear optical interactions such as Kerr nonlinear effect. It is essential to provide sufficient information in order to characterize the nonlinear optical performance of nonlinear HPW (NLHPW). In this study, a figure of merit (FoM) was proposed for the description of the performance of the nonlinear optical waveguide characterized by its material damage threshold, propagation length, nonlinear coefficient, and confinement factor. In this paper, SOI-based and InP-based NLHPW were simulated using finite element method, and they were evaluated with regards to proposed FoM at telecom wavelength of 1550 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D K Gramotnev and S I Bozhevolnyi Nat. Photonics4 83 (2010)

    Article  ADS  Google Scholar 

  2. J A Schuller, E S Barnard, W Cai, Y C Jun, J S White and M L Brongersma Nat. Mater.9 193 (2010)

    Article  ADS  Google Scholar 

  3. R F Oulton, V J Sorger, D A Genov, D F P Pile and X Zhang Nat. Photonics2 496 (2008)

    Article  Google Scholar 

  4. J N Caspers, N Rotenberg and H M van Driel Opt. Exp.18 1976 (2010)

    Google Scholar 

  5. E Garmire Opt. Exp.21 30532 (2013)

    Article  ADS  Google Scholar 

  6. F Kish, R Nagarajan, D Welch, P Evans, J Rossi, J Pleumeekers, A Dentali, M Kato, S Crozine, R Muthiah and M Ziari Proc. IEEE101 2255 (2013)

    Article  Google Scholar 

  7. J P Donnelly, H Q Le and E A Swanson IEEE Photon Technol Lett8 623 (1996)

    Article  ADS  Google Scholar 

  8. M Dinu, F Quochi and H Garcia Appl. Phys. Lett.82 2954 (2003)

    Article  ADS  Google Scholar 

  9. [9] D Liang, G Roelkens, R Baets and J E Bowers Mater.3 1782 (2010)

    Google Scholar 

  10. G Li, C M de Sterke and S Palomba Laser Photon. Rev.10 639 (2016)

    Article  ADS  Google Scholar 

  11. S Afshar and T M Monro Opt. Exp.17 2298 (2009)

    Article  ADS  Google Scholar 

  12. A Pitilakis and E E Kriezis J. Opt. Soc. Am. B30 1954 (2013)

    Article  Google Scholar 

  13. P Steglich, C Mai, D Stolarek, S Lischke, S Kupijai, C Villringer, S Pulwer, F Heinrich, J Bauer, S Meister and D Knoll IEEE Photonics Technol. Lett.27 2197 (2015)

    Article  ADS  Google Scholar 

  14. P B Johnson and R W Christy Phys. Rev. B6 4370 (1972)

    Article  ADS  Google Scholar 

  15. B Esembeson, M L Scimeca, Adv. Mater.20 4584 (2008)

    Article  Google Scholar 

  16. Q Lin, J Zhang, G Piredda, R W Boyd, P M Fauchet and G P Agrawal Appl. Phys. Lett.91 021111 (2007)

    Article  ADS  Google Scholar 

  17. M Nikoufard, M K Alamouti and S Pourgholi IEEE Trans. Nanotechnol.16 477 (2017)

    Article  ADS  Google Scholar 

  18. A M Darwish, E P Ippen, H Q Le, J P Donnelly, S H Groves and E A Swanson Appl. Phys. Lett.68 2038 (1996)

    Article  ADS  Google Scholar 

  19. K Matsuura and I Tomita Keigo Int. J. Math. Comput. Phys. Electr. Comput. Eng.8 1292 (2014)

    Google Scholar 

  20. M J Weber, D Milam and W L Smith Opt. Eng.17 175463 (1978)

    Google Scholar 

  21. F Fiedler and A Schlachetzki Solid State Electron.3073 (1987)

    Article  ADS  Google Scholar 

  22. M D Firouzabadi, M Nikoufard and M B Tavakoli Opt. Quantum Electron.49 390 (2017)

    Article  Google Scholar 

  23. H Kamal, M A Ettabib, A Bogris, A Kapsalis, D Syvridis, M Brun, P Labeye, S Nicoletti, D J Richardson, and P Petropoulos. Opt. Exp.21 16690 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Nikoufard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firouzabadi, M.D., Nikoufard, M. & Tavakoli, M.B. Modifying the figure of merit in hybrid plasmonic waveguide for Kerr nonlinear effect. Indian J Phys 94, 713–718 (2020). https://doi.org/10.1007/s12648-019-01507-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01507-6

Keywords

PACS Nos.

Navigation