Log in

Numerical Analysis of a GaAs-Based Hybrid Plasmonic Waveguide with Nanoscale Optical Confinement and Low Losses

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A numerical analysis of a hybrid plasmonic waveguide (HPW) for deep subwavelength optical confinement and long-range propagation with low loss is presented here. Two types of material platforms, namely, Si/SiO2/Au and GaAs/SiO2/Ag, were analyzed to optimize the HP waveguide. The mode character, an important and crucial design parameter for HP waveguides, was calculated based on the coupled mode theory, providing the coupling strength between the SPP and optical mode. As for the Si/SiO2/Au HP waveguide, the coupling strength varied from 0.47 to 0.60 with a mode area ranging from 0.0002/μm2 to 0.001/μm2 and mode character near to the SPP mode character (i.e., |a+(tsi, w, td)|= 0.47). While for the GaAs/SiO2/Ag HP waveguide, the coupling strength varied from 0.57 to 0.69 with a mode area ranging from 0.0002/μm2 to 0.0004/μm2 and mode character to SPP approached as |a+(tGaAs, w, td)|= 0.49. Finally, a finite element method (FEM) model was used to investigate the modal properties. The simulation analysis shows that at td = 10 nm the GaAs/SiO2/Ag waveguide gives 50% larger propagation length (205 μm), ten times smaller mode area (0.0002) with 60% lower modal propagation loss (0.021 db/μm), and 20% stronger coupling strength (0.62) with HPP mode character as 0.48 as compared to Si/SiO2/Au.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The data sets generated during and/or analyzed during the current study are not publicly available due to needs for the next study but are available from the corresponding author on reasonable request.

References

  1. Sharma T, Rana V, Wang J, Cheng Z, Chen Y, Geng Y, Hong X, Li X, Yu K, Kaushik BK (2020) Design of grating based narrow band reflector on SOI waveguide. Optik- Int J Light Electron Optics, In press: Elsevier

  2. Sharma T, Kwon H, Park J, Han S, Yu K (2018) Coupling performance enhancement using single etch SOI grating coupler design Opt Commun, Elsevier, 427:0–4

  3. Sharma T, Wang J, Kaushik BK, Cheng Z, Kumar R, Zhao W, Li X (2020) Recent progress on silicon nitride based photonic integrated circuits. IEEE Access 8:195436–195446 (IF. 3.8)SCI

  4. Tsilipakos O, Pitilakis A, Yioultsis TV, Papaioannou S, Vyrsokinos K, Kalavrouziotis D, Giannoulis G, Apostolopoulos D, Avramopoulos H, Tekin T, Baus M, Karl M, Hassan K, Weeber JC, Markey L, Dereux A, Kumar A, Bozhevolnyi SI, Pleros N, Kriezis EE (2012) Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: theoretical analysis and experimental demonstration. IEEE J Quantum Electron 48(5):678–687

    Article  CAS  Google Scholar 

  5. Maier SA (2006) Plasmonics: metal nanostructures for subwavelength photonic devices. IEEE J Sel Topics Quantum Electron 12(6):1214–1220

    Article  CAS  Google Scholar 

  6. Feng N-N, Brongersma M, Negro L (2007) Metal–dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm. IEEE J Quantum Electron 43(6):479–485

    Article  Google Scholar 

  7. Gosciniak J, Holmgaard T, Bozhevolnyi S (2011) Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides. J Lightw Technol 29(10):1473–1481

    Article  CAS  Google Scholar 

  8. Finot, Dereux A (2009) Gain-assisted propagation in a plasmonic waveguide at telecom wavelength. Nano Lett 9(8):2935–2939

  9. Berini P (2007) Air gap in metal strip waveguides supporting long-range surface plasmon polaritons. J App Phys 102(3):3112–3117

    Article  Google Scholar 

  10. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  11. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  12. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–9

    Article  CAS  Google Scholar 

  13. Charbonneau R, Lahoud N, Mattiussi G, Berini P (2005) Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons. Opt Express 13(3):977–984

    Article  Google Scholar 

  14. Liu L, Han Z, He S (2005) Novel surface plasmon waveguide for high integration. Opt G Veronis and Fan SH, Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl Phys Lett 87(13):1102–1105

  15. Sharma T, Singh L, Kumar M (2016) Nanophotonic ultrashort coupler based on hybrid plasmonic waveguide with lateral subwavelength grating. IEEE Trans Nanotechnol, IEEE 15(6):1–5

    Google Scholar 

  16. Sharma T, Kumar M (2015) Hybridization of plasmonic and photonic modes for subwavelength optical confinement with longer propagation and variable nonlinearity. Opt Commun, Elsevier 343:85–90

    Article  CAS  Google Scholar 

  17. Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation. Nature Photon 2(8):496–500

    Article  CAS  Google Scholar 

  18. Dai D, He S (2009) A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt Express 17(19):16646–16653

    Article  CAS  Google Scholar 

  19. Flammer PD, BanksJM FurtakTE, Durfee CG, Hollingsworth RE, Collins RT (2010) Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements Opt. Express 18(20):21013–21023

    Article  CAS  Google Scholar 

  20. Muellner P, Wellenzohn M, Hainberger R (2009) Nonlinearity of optimized silicon photonic slot waveguides. Opt. Express 17(11):9282–9287

    Article  CAS  Google Scholar 

  21. Kou Y, Ye F, Chen X (2011) Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration. Opt Express 19(12):11746–11752

    Article  CAS  Google Scholar 

  22. Gao L, Tang L, Hu F, Guo R, Wang X, Zhou Z (2012) Active metal strip hybrid plasmonic waveguide with low critical material gain. Opt Express 20(10):11487–11495

    Article  CAS  Google Scholar 

  23. Sharma T, Kumar M (2014) Hollow hybrid plasmonic waveguide for nanoscale optical confinement with long range propagation. Appl Opt 53(9):1954–1957

    Article  CAS  Google Scholar 

  24. Yang X, Liu Y, Outlon RF, Yin X, Zhang X (2013) Optical forces in hybrid plasmonic waveguide. Nano Lett 11:321–328

    Article  CAS  Google Scholar 

  25. Alam MZ, Meier J, Aitchison JS, Mojahedi M (2007) Super mode propagation in low index medium. Quantum Electron Laser Sci Conf QELS 07:1–2, IEEE

  26. Wang F, Chen Y, Li C, Ma T, Wang X, Yu K, Li L (2022) Ultracompact and broadband mid-infrared polarization beam splitter based on an asymmetric directional coupler consisting of GaAs–CaF2 hybrid plasmonic waveguide and GaAs nanowire. Optics Comm 502:127418

  27. Ho J, Tatebayashi J, Sergent S, Fong CF, Iwamoto S, Arakawa Y (2015) Low-threshold near-infrared GaAs–AlGaAs core–shell nanowire plasmon laser. ACS Photo 2:65–171

    Google Scholar 

  28. Kumar S, Kumar P, Ranjan R (2021) A metal-cap wedge shape hybrid plasmonic waveguide for nano-scale light confinement and long propagation range. Plasmonics 17:95–105

    Article  CAS  Google Scholar 

  29. Wang J, Guo Y, Huang BH, Gao SP, **a YS (2019) A silicon-based hybrid plasmonic waveguide for nano-scale optical confinement and long-range propagation. IEEE Trans Nanotechnol 18:437–444

    Article  Google Scholar 

  30. Hassan HMI, Areed NFF, El-Mikati HA, Hameed MFO, Obayya SSA (2022) Low loss hybrid plasmonic photonic crystal waveguide for optical communication applications. Opt Quantum Electron 54:431–18

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author would like to thank Prof. B. K. Kaushik, ECE Department IIT Roorkee, for using his simulation tools facility for the simulation work.

Author information

Authors and Affiliations

Authors

Contributions

As I am a single author, this statement is not applicable to me.

Corresponding author

Correspondence to Tarun Sharma.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, T. Numerical Analysis of a GaAs-Based Hybrid Plasmonic Waveguide with Nanoscale Optical Confinement and Low Losses. Plasmonics 18, 183–190 (2023). https://doi.org/10.1007/s11468-022-01759-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01759-9

Keywords

Navigation