Log in

Tribological properties of high-entropy alloys: A review

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Tribology, which is the study of friction, wear, and lubrication, largely deals with the service performance of structural materials. For example, newly emerging high-entropy alloys (HEAs), which exhibit excellent hardness, anti-oxidation, anti-softening ability, and other properties, enrich the wear-resistance alloy family. To demonstrate the tribological behavior of HEAs systematically, this review first describes the basic tribological characteristics of single-, dual-, and multi-phase HEAs and HEA composites at room temperature. Then, it summarizes the strategies that improve the tribological property of HEAs. This review also discusses the tribological performance at elevated temperatures and provides a brief perspective on the future development of HEAs for tribological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122(2017), p. 448.

    Article  CAS  Google Scholar 

  2. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61(2014), p. 1.

    Article  Google Scholar 

  3. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375–377(2004), p. 213.

    Article  Google Scholar 

  4. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299.

    Article  CAS  Google Scholar 

  5. W.R. Zhang, P.K. Liaw, and Y. Zhang, Science and technology in high-entropy alloys, Sci. China Mater., 61(2018), No. 1, p. 2.

    Article  CAS  Google Scholar 

  6. Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength—ductility trade-off, Nature, 534(2016), No. 7606, p. 227.

    Article  CAS  Google Scholar 

  7. T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, and C.T. Liu, Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys, Science, 362(2018), No. 6417, p. 933.

    Article  CAS  Google Scholar 

  8. P.J. Shi, R.G. Li, Y. Li, Y.B. Wen, Y.B. Zhong, W.L. Ren, Z. Shen, T.X. Zheng, J.C. Peng, X. Liang, P.F. Hu, N. Min, Y. Zhang, Y. Ren, P.K. Liaw, D. Raabe, and Y.D. Wang, Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys, Science, 373(2021), No. 6557, p. 912.

    Article  CAS  Google Scholar 

  9. Q.S. Pan, L.X. Zhang, R. Feng, Q.H. Lu, K. An, A.C. Chuang, J.D. Poplawsky, P.K. Liaw, and L. Lu, Gradient cell-structured high-entropy alloy with exceptional strength and ductility, Science, 374(2021), No. 6570, p. 984.

    Article  CAS  Google Scholar 

  10. P.J. Shi, Y.B. Zhong, Y. Li, W.L. Ren, T.X. Zheng, Z. Shen, B. Yang, J.C. Peng, P.F. Hu, Y. Zhang, P.K. Liaw, and Y.T. Zhu, Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys, Mater. Today, 41(2020), p. 62.

    Article  CAS  Google Scholar 

  11. B. Gwalani, S. Dasari, A. Sharma, V. Soni, S. Shukla, A. Jagetia, P. Agrawal, R.S. Mishra, and R. Banerjee, High density of strong yet deformable intermetallic nanorods leads to an excellent room temperature strength—ductility combination in a high entropy alloy, Acta Mater., 219(2021), art. No. 117234.

  12. S.Q. Yuan, B. Gan, L. Qian, B. Wu, H. Fu, H.H. Wu, C.F. Cheung, and X.S. Yang, Gradient nanotwinned CrCoNi medium-entropy alloy with strength—ductility synergy, Scripta Mater., 203(2021), art. No. 114117.

  13. R. Feng, Y. Rao, C.H. Liu, X. ** performance in strong and ductile high-entropy alloys, Sci. Adv., 6(2020), No. 25, art. No. eaba7802.

  14. H. Luo, Z.M. Li, A.M. Mingers, and D. Raabe, Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution, Corros. Sci., 134(2018), p. 131.

    Article  CAS  Google Scholar 

  15. T.T. Zuo, X. Yang, P.K. Liaw, and Y. Zhang, Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy, Intermetallics, 67(2015), p. 171.

    Article  CAS  Google Scholar 

  16. N.A.P.K. Kumar, C. Li, K.J. Leonard, H. Bei, and S.J. Zinkle, Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation, Acta Mater., 113(2016), p. 230.

    Article  CAS  Google Scholar 

  17. Y.X. Ye, C.Z. Liu, H. Wang, and T.G. Nieh, Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique, Acta Mater., 147(2018), p. 78.

    Article  CAS  Google Scholar 

  18. M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy, high-entropy alloys, Acta Mater., 59(2011), No. 16, p. 6308.

    Article  CAS  Google Scholar 

  19. F. Ren, S.N. Arshad, P. Bellon, R.S. Averback, M. Pouryazdan, and H. Hahn, Sliding wear-induced chemical nanolayering in Cu—Ag, and its implications for high wear resistance, Acta Mater., 72(2014), p. 148.

    Article  CAS  Google Scholar 

  20. C. Greiner, J. Gagel, and P. Gumbsch, Solids under extreme shear: Friction-mediated subsurface structural transformations, Adv. Mater., 31(2019), No. 16, art. No. 1806705.

  21. K. Holmberg, P. Andersson, and A. Erdemir, Global energy consumption due to friction in passenger cars, Tribol. Int., 47(2012), p. 221.

    Article  Google Scholar 

  22. J.F. Archard, Contact and rubbing of flat surfaces, J. Appl. Phys., 24(1953), No. 8, p. 981.

    Article  Google Scholar 

  23. I. Basu and J.T.M. De Hosson, Strengthening mechanisms in high entropy alloys: Fundamental issues, Scripta Mater., 187(2020), p. 148.

    Article  CAS  Google Scholar 

  24. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang, High-entropy alloy: Challenges and prospects, Mater. Today, 19(2016), No. 6, p. 349.

    Article  CAS  Google Scholar 

  25. C. Greiner, Z.L. Liu, L. Strassberger, and P. Gumbsch, Sequence of stages in the microstructure evolution in copper under mild reciprocating tribological loading, ACS Appl. Mater. Interfaces, 8(2016), No. 24, p. 15809.

    Article  CAS  Google Scholar 

  26. C. Nagarjuna, H.J. You, S. Ahn, J.W. Song, K.Y. Jeong, B. Madavali, G. Song, Y.S. Na, J.W. Won, H.S. Kim, and S.J. Hong, Worn surface and subsurface layer structure formation behavior on wear mechanism of CoCrFeMnNi high entropy alloy in different sliding conditions, Appl. Surf. Sci., 549(2021), art. No. 149202.

  27. A. Dollmann, A. Kauffmann, M. Heilmaier, C. Haug, and C. Greiner, Microstructural changes in CoCrFeMnNi under mild tribological load, J. Mater. Sci., 55(2020), No. 26, p. 12353.

    Article  CAS  Google Scholar 

  28. Y.S. Geng, J. Chen, H. Tan, J. Cheng, J. Yang, and W.M. Liu, Vacuum tribological behaviors of CoCrFeNi high entropy alloy at elevated temperatures, Wear, 456–457(2020), art. No. 203368.

  29. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345(2014), No. 6201, p. 1153.

    Article  CAS  Google Scholar 

  30. Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater., 81(2014), p. 428.

    Article  CAS  Google Scholar 

  31. A.J. Zaddach, C. Niu, C.C. Koch, and D.L. Irving, Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy, JOM, 65(2013), No. 12, p. 1780.

    Article  CAS  Google Scholar 

  32. I.V. Kireeva, Y.I. Chumlyakov, Z.V. Pobedennaya, I.V. Kuksgausen, and I. Karaman, Orientation dependence of twinning in single crystalline CoCrFeMnNi high-entropy alloy, Mater. Sci. Eng. A, 705(2017), p. 176.

    Article  CAS  Google Scholar 

  33. G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, and E.P. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Mater., 118(2016), p. 152.

    Article  CAS  Google Scholar 

  34. M.X. Yang, D.S. Yan, F.P. Yuan, P. Jiang, E. Ma, and X.L. Wu, Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength, Proc. Natl. Acad. Sci. U. S. A., 115(2018), No. 28, p. 7224.

    Article  CAS  Google Scholar 

  35. L. Yang, Z. Cheng, W.W. Zhu, C.C. Zhao, and F.Z. Ren, Significant reduction in friction and wear of a high-entropy alloy via the formation of self-organized nanolayered structure, J. Mater. Sci. Technol., 73(2021), p. 1.

    Article  Google Scholar 

  36. N.R. Tao and K. Lu, Nanoscale structural refinement via deformation twinning in face-centered cubic metals, Scripta Mater., 60(2009), No. 12, p. 1039.

    Article  CAS  Google Scholar 

  37. X.B. Guo, I. Baker, F.E. Kennedy, S.P. Ringer, H.S. Chen, W.D. Zhang, Y. Liu, and M. Song, A comparison of the dry sliding wear of single-phase f.c.c. carbon-doped Fe40.4Ni11.3Mn34.8Al7.5Cr6 and CoCrFeMnNi high entropy alloys with 316 stainless steel, Mater. Charact., 170(2020), art. No. 110693.

  38. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and 20Nb20Mo20Ta20W20 refractory high entropy alloys, Intrometallics, 19(2011), No. 5, p. 698.

    Article  CAS  Google Scholar 

  39. Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, and X.D. Hui, A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties, Mater. Lett., 130(2014), p. 277.

    Article  CAS  Google Scholar 

  40. R.R. Eleti, T. Bhattacharjee, A. Shibata, and N. Tsuji, Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy, Acta Mater., 171(2019), p. 132.

    Article  CAS  Google Scholar 

  41. T.D. Huang, S.Y. Wu, H. Jiang, Y.P. Lu, T.M. Wang, and T.J. Li, Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1318.

    Article  CAS  Google Scholar 

  42. O.N. Senkov, S.V. Senkova, and C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys, Acta Mater., 68(2014), p. 214.

    Article  CAS  Google Scholar 

  43. S. Alvi and F. Akhtar, High temperature tribology of Cu-MoTaWV high entropy alloy, Wear, 426–427(2019), p. 412.

    Article  Google Scholar 

  44. Y.X. Guo and Q.B. Liu, MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by rectangular-spot laser cladding, Intermetallics, 102(2018), p. 78.

    Article  CAS  Google Scholar 

  45. A. Poulia, E. Georgatis, and A. Karantzalis, Evaluation of the microstructural aspects, mechanical properties and dry sliding wear response of MoTaNbVTi refractory high entropy alloy, Met. Mater. Int., 25(2019), No. 6, p. 1529.

    Article  CAS  Google Scholar 

  46. C. Mathiou, A. Poulia, E. Georgatis, and A.E. Karantzalis, Microstructural features and dry-sliding wear response of MoTaNbZrTi high entropy alloy, Mater. Chem. Phys., 210(2018), p. 126.

    Article  CAS  Google Scholar 

  47. M. Pole, M. Sadeghilaridjani, J. Shittu, A. Ayyagari, and S. Mukherjee, High temperature wear behavior of refractory high entropy alloys based on 4-5-6 elemental palette, J. Alloys Compd., 843(2020), art. No. 156004.

  48. A. Poulia, E. Georgatis, A. Lekatou, and A. Karantzalis, Dry-sliding wear response of MoTaWNbV high entropy alloy, Adv. Eng. Mater., 19(2017), No. 2, art. No. 1600535.

  49. N.B. Hua, W.J. Wang, Q.T. Wang, Y.X. Ye, S.H. Lin, L. Zhang, Q.H. Guo, J. Brechtl, and P.K. Liaw, Mechanical, corrosion, and wear properties of biomedical Ti-Zr-Nb-Ta-Mo high entropy alloys, J. Alloys Compd., 861(2021), art. No. 157997.

  50. H.L. Huang, Y. Wu, J.Y. He, H. Wang, X.J. Liu, K. An, W. Wu, and Z.P. Lu, Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering, Adv. Mater., 29(2017), No. 30, art. No. 1701678.

  51. C. Lee, G. Song, M.C. Gao, R. Feng, P.Y. Chen, J. Brechtl, Y. Chen, K. An, W. Guo, J.D. Poplawsky, S. Li, A.T. Samaei, W. Chen, A. Hu, H. Choo, and P.K. Liaw, Lattice distortion in a strong and ductile refractory high-entropy alloy, Acta Mater., 160(2018), p. 158.

    Article  CAS  Google Scholar 

  52. C. Lee, G. Kim, Y. Chou, B.L. Musicó, M.C. Gao, K. An, G. Song, Y.C. Chou, V. Keppens, W. Chen, and P.K. Liaw, Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy, Sci. Adv., 6(2020), No. 37, art. No. eaaz4748.

  53. M. Sadeghilaridjani, M. Pole, S. Jha, S. Muskeri, N. Ghodki, and S. Mukherjee, Deformation and tribological behavior of ductile refractory high-entropy alloys, Wear, 478–479(2021), art. No. 203916.

  54. V. Bhardwaj, Q. Zhou, F. Zhang, W.C. Han, Y. Du, K. Hua, and H.F. Wang, Effect of Al addition on the microstructure, mechanical and wear properties of TiZrNbHf refractory high entropy alloys, Tribol. Int., 160(2021), art. No. 107031.

  55. G.Y. Deng, A.K. Tieu, L.H. Su, P. Wang, L. Wang, X.D. Lan, S.G. Cui, and H.T. Zhu, Investigation into reciprocating dry sliding friction and wear properties of bulk CoCrFeNiMo high entropy alloys fabricated by spark plasma sintering and subsequent cold rolling processes: Role of Mo element concentration, Wear, 460–461(2020), art. No. 203440.

  56. J.W. Miao, H. Liang, A.J. Zhang, J.Y. He, J.H. Meng, and Y.P. Lu, Tribological behavior of an AlCoCrFeNi2.1 eutectic high entropy alloy sliding against different counterfaces, Tribol. Int., 153(2021), art. No. 106599.

  57. N. Haghdadi, T. Guo, A. Ghaderi, P.D. Hodgson, M.R. Barnett, and D.M. Fabijanic, The scratch behaviour of AlxCoCrFeNi (x=0.3 and 1.0) high entropy alloys, Wear, 428–429(2019), p. 293.

    Article  Google Scholar 

  58. M. Chen, L.W. Lan, X.H. Shi, H.J. Yang, M. Zhang, and J.W. Qiao, The tribological properties of Al06CoCrFeNi high-entropy alloy with the σ phase precipitation at elevated temperature, J. Alloys Compd., 777(2019), p. 180.

    Article  CAS  Google Scholar 

  59. Y.S. Geng, H. Tan, L. Wang, A.K. Tieu, J. Chen, J. Cheng, and J. Yang, Nano-coupled heterostructure induced excellent mechanical and tribological properties in AlCoCrFeNi high entropy alloy, Tribol. Int., 154(2021), art. No. 106662.

  60. J. Joseph, N. Haghdadi, K. Shamlaye, P. Hodgson, M. Barnett, and D. Fabijanic, The sliding wear behaviour of CoCrFeM-nNi and AlxCoCrFeNi high entropy alloys at elevated temperatures, Wear, 428–429(2019), p. 32.

    Article  Google Scholar 

  61. S.Z. Niu, H.C. Kou, J. Wang, and J.S. Li, Improved tensile properties of Al0.5CoCrFeNi high-entropy alloy by tailoring microstructures, Rare Met., 40(2021), No. 9, p. 1.

    Article  Google Scholar 

  62. H.X. Yang, J.S. Li, T. Guo, W.Y. Wang, H.C. Kou, and J. Wang, Evolution of microstructure and hardness in a dual-phase Al0.5CoCrFeNi high-entropy alloy with different grain sizes, Rare Met., 39(2020), No. 2, p. 156.

    Article  CAS  Google Scholar 

  63. J.X. Hou, J. Fan, H.J. Yang, Z. Wang, and J.W. Qiao, Deformation behavior and plastic instability of boronized Al0.25CoCrFeNi high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1363.

    Article  CAS  Google Scholar 

  64. C.B. Wei, X.H. Du, Y.P. Lu, H. Jiang, T.J. Li, and T.M. Wang, Novel as-cast AlCrFe2Ni2Ti0.5 high-entropy alloy with excellent mechanical properties, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1312.

    Article  CAS  Google Scholar 

  65. M. Zhang, J.X. Hou, H.J. Yang, Y.Q. Tan, X.J. Wang, X.H. Shi, R.P. Guo, and J.W. Qiao, Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1341.

    Article  Google Scholar 

  66. M.Y. Wu, K. Chen, Z. Xu, and D.Y. Li, Effect of Ti addition on the sliding wear behavior of AlCrFeCoNi high-entropy alloy, Wear, 462–463(2020), art. No. 203493.

  67. X.C. Ye, T. Wang, Z.Y. Xu, C. Liu, H.H. Wu, G.W. Zhao, and D. Fang, Effect of Ti content on microstructure and mechanical properties of CuCoFeNi high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1326.

    Article  CAS  Google Scholar 

  68. Z. Cheng, L. Yang, Z.K. Huang, T. Wan, M.Y. Zhu, and F.Z. Ren, Achieving low wear in a μ-phase reinforced high-entropy alloy and associated subsurface microstructure evolution, Wear, 474–475(2021), art. No. 203755.

  69. Y. Fu, C. Huang, C.W. Du, J. Li, C.D. Dai, H. Luo, Z.Y. Liu, and X.G. Li, Evolution in microstructure, wear, corrosion, and tribocorrosion behavior of Mo-containing high-entropy alloy coatings fabricated by laser cladding, Corros. Sci., 191(2021), art. No. 109727.

  70. Y. Yu, F. He, Z.H. Qiao, Z.J. Wang, W.M. Liu, and J. Yang, Effects of temperature and microstructure on the triblogical properties of CoCrFeNiNbx eutectic high entropy alloys, J. Alloys Compd., 775(2019), p. 1376.

    Article  CAS  Google Scholar 

  71. N. Malatji, A.P.I. Popoola, T. Lengopeng, and S. Pityana, Effect of Nb addition on the microstructural, mechanical and electrochemical characteristics of AlCrFeNiCu high-entropy alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1332.

    Article  CAS  Google Scholar 

  72. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Mater., 62(2014), p. 105.

    Article  CAS  Google Scholar 

  73. J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, and H.C. Chen, Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content, Wear, 261(2006), No. 5–6, p. 513.

    Article  CAS  Google Scholar 

  74. G.J. Zhang, Q.W. Tian, K.X. Yin, S.Q. Niu, M.H. Wu, Y.N. Wang, and J.C. Huang, Microstructure, hardness and wear behavior of AlxCoCrFe2Ni (x = 0.3, 0.7, 1.0) high entropy alloy coatings prepared by laser cladding, JOM, 73(2021), No. 11, p. 3597.

    Article  CAS  Google Scholar 

  75. E.P. George, W.A. Curtin, and C.C. Tasan, High entropy alloys: A focused review of mechanical properties and deformation mechanisms, Acta Mater., 188(2020), p. 435.

    Article  CAS  Google Scholar 

  76. C.Y. Hsu, T.S. Sheu, J.W. Yeh, and S.K. Chen, Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys, Wear, 268(2010), No. 5–6, p. 653.

    Article  CAS  Google Scholar 

  77. D. Kumar, J. B, D.K. Meena, E.W. Huang, Y.J. Chang, A.C. Yeh, J. Jain, S. Neelakantan, and N.N. Gosvami, Reversal of favorable microstructure under plastic ploughing vs. interfacial shear induced wear in aged Co1.5CrFeNi1.5Ti0.5 high-entropy alloy, Wear, 468–469(2021), art. No. 203595.

  78. B. Gwalani, T. Torgerson, S. Dasari, A. Jagetia, M.S.K.K.Y. Nartu, S. Gangireddy, M. Pole, T. Wang, T.W. Scharf, and R. Banerjee, Influence of fine-scale B2 precipitation on dynamic compression and wear properties in hypo-eutectic Al0.5CoCrF-eNi high-entropy alloy, J. Alloys Compd., 853(2021), art. No. 157126.

  79. Y.C. Cai, L.S. Zhu, Y. Cui, M.D. Shan, H.J. Li, Y. **n, and J. Han, Fracture and wear mechanisms of FeMnCrNiCo + x(TiC) composite high-entropy alloy cladding layers, Appl. Surf. Sci., 543(2021), art. No. 148794.

  80. P.F. Jiang, C.H. Zhang, S. Zhang, J.B. Zhang, J. Chen, and Y. Liu, Fabrication and wear behavior of TiC reinforced Fe-CoCrAlCu-based high entropy alloy coatings by laser surface alloying, Mater. Chem. Phys., 255(2020), art. No. 123571.

  81. T. Zhu, H. Wu, R. Zhou, N.Y. Zhang, Y. Yin, L.X. Liang, Y. Liu, J. Li, Q. Shan, Q.X. Li, and W.D. Huang, Microstructures and tribological properties of TiC reinforced FeCoNiCuAl high-entropy alloy at normal and elevated temperature, Metals, 10(2020), No. 3, art. No. 387.

  82. Z.M. Guo, A.J. Zhang, J.S. Han, and J.H. Meng, Microstructure, mechanical and tribological properties of CoCrFeNiMn high entropy alloy matrix composites with addition of Cr3C2, Tribol. Int., 151(2020), art. No. 106436.

  83. R. Zhou, G. Chen, B. Liu, J.W. Wang, L.L. Han, and Y. Liu, Microstructures and wear behaviour of (FeCoCrNi)1−x(WC)x high entropy alloy composites, Int. J. Refract. Met. Hard Mater., 75(2018), p. 56.

    Article  CAS  Google Scholar 

  84. X.Y. Liu, H. Yin, and Y. Xu, Microstructure, mechanical and tribological properties of oxide dispersion strengthened high-entropy alloys, Materials, 10(2017), No. 11, art. No. 1312.

  85. E. Hornbogen, The role of fracture toughness in the wear of metals, Wear, 33(1975), No. 1, p. 251.

    Article  CAS  Google Scholar 

  86. Y.X. Wang, Y.J. Yang, H.J. Yang, M. Zhang, and J.W. Qiao, Effect of nitriding on the tribological properties of Al1.3CoCuFeNi2 high-entropy alloy, J. Alloys Compd., 725(2017), p. 365.

    Article  CAS  Google Scholar 

  87. Y.X. Wang, Y.J. Yang, H.J. Yang, M. Zhang, S.G. Ma, and J.W. Qiao, Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy, Mater. Chem. Phys., 210(2018), p. 233.

    Article  CAS  Google Scholar 

  88. L.W. Lan, X.J. Wang, R.P. Guo, H.J. Yang, and J.W. Qiao, Effect of environments and normal loads on tribological properties of nitrided Ni45(FeCoCr)40(AlTi)15 high-entropy alloys, J. Mater. Sci. Technol., 41(2020), p. 85.

    Article  Google Scholar 

  89. J.X. Hou, M. Zhang, H.J. Yang, J.W. Qiao, and Y.C. Wu, Surface strengthening in Al0.25CoCrFeNi high-entropy alloy by boronizing, Mater. Lett., 238(2019), p. 258.

    Article  CAS  Google Scholar 

  90. Y.H. Wu, H.J. Yang, R.P. Guo, X.J. Wang, X.H. Shi, P.K. Liaw, and J.W. Qiao, Tribological behavior of boronized Al0.1CoCrFeNi high-entropy alloys under dry and lubricated conditions, Wear, 460–461(2020), art. No. 203452.

  91. A. Verma, P. Tarate, A.C. Abhyankar, M.R. Mohape, D.S. Gowtam, V.P. Deshmukh, and T. Shanmugasundaram, High temperature wear in CoCrFeNiCux high entropy alloys: The role of Cu, Scripta Mater., 161(2019), p. 28.

    Article  CAS  Google Scholar 

  92. X.Y. Liu, S.Q. Zhou, and Y. Xu, Microstructure and tribological performance of Fe50Mn30Co10Cr10 high-entropy alloy based self-lubricating composites, Mater. Lett., 233(2018), p. 142.

    Article  CAS  Google Scholar 

  93. Y.S. Geng, J. Chen, H. Tan, J. Cheng, S.Y. Zhu, and J. Yang, Tribological performances of CoCrFeNiAl high entropy alloy matrix solid-lubricating composites over a wide temperature range, Tribol. Int., 157(2021), art. No. 106912.

  94. A.J. Zhang, J.S. Han, B. Su, D.L. Pen, and J.H. Meng, Microstructure, mechanical properties and tribological performance of CoCrFeNi high entropy alloy matrix self-lubricating composite, Mater. Des., 114(2017), p. 253.

    Article  CAS  Google Scholar 

  95. A.J. Zhang, J.S. Han, B. Su, and J.H. Meng, A novel CoCrFeNi high entropy alloy matrix self-lubricating composite, J. Alloys Compd., 725(2017), p. 700.

    Article  CAS  Google Scholar 

  96. P.Y. Shi, Y. Yu, N.N. **ong, M.Z. Liu, Z.H. Qiao, G.W. Yi, Q.Q. Yao, G.P. Zhao, E.Q. **e, and Q.H. Wang, Microstructure and tribological behavior of a novel atmospheric plasma sprayed AlCoCrFeNi high entropy alloy matrix self-lubricating composite coatings, Tribol. Int., 151(2020), art. No. 106470.

  97. A.O. Moghaddam, M.N. Samodurova, K. Pashkeev, M. Doubenskaia, A. Sova, and E.A. Trofimov, A novel intermediate temperature self-lubricating CoCrCu1−xFeNix high entropy alloy fabricated by direct laser cladding, Tribol. Int., 156(2021), art. No. 106857.

  98. A.J. Zhang, J.S. Han, B. Su, and J.H. Meng, A promising new high temperature self-lubricating material: CoCrFeNiS0.5 high entropy alloy, Mater. Sci. Eng. A, 731(2018), p. 36.

    Article  CAS  Google Scholar 

  99. J. Joseph, N. Haghdadi, M. Annasamy, S. Kada, P.D. Hodgson, M.R. Barnett, and D.M. Fabijanic, On the enhanced wear resistance of CoCrFeMnNi high entropy alloy at intermediate temperature, Scripta Mater., 186(2020), p. 230.

    Article  CAS  Google Scholar 

  100. W.H. Liu, Y. Wu, J.Y. He, Y. Zhang, C.T. Liu, and Z.P. Lu, The phase competition and stability of high-entropy alloys, JOM, 66(2014), No. 10, p. 1973.

    Article  CAS  Google Scholar 

  101. F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, and E.P. George, Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures, Acta Mater., 112(2016), p. 40.

    Article  CAS  Google Scholar 

  102. E.J. Pickering, R. Muñoz-Moreno, H.J. Stone, and N.G. Jones, Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi, Scripta Mater., 113(2016), p. 106.

    Article  CAS  Google Scholar 

  103. G. **, Z.B. Cai, Y.J. Guan, X.F. Cui, Z. Liu, Y. Li, M.L. Dong, and D. Zhang, High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating, Appl. Surf. Sci., 445(2018), p. 113.

    Article  CAS  Google Scholar 

  104. Y. Wei, Y. Fu, Z.M. Pan, Y.C. Ma, H.X. Cheng, Q.C. Zhao, H. Luo, and X.G. Li, Influencing factors and mechanism of high-temperature oxidation of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 915.

    Article  CAS  Google Scholar 

  105. L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, and J.W. Qiao, Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy, J. Mater. Sci. Technol., 35(2019), No. 5, p. 917.

    Article  Google Scholar 

  106. B.B. **n, A.J. Zhang, J.S. Han, and J.H. Meng, The tribological properties of carbon doped Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloys, Wear, 484–485(2021), art. No. 204045.

  107. T.J. Rupert and C.A. Schuh, Sliding wear of nanocrystalline Ni-W: Structural evolution and the apparent breakdown of Archard scaling, Acta Mater., 58(2010), No. 12, p. 4137.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Nos. 51901013, 52071023, and 52122408), the State Key Lab of Advanced Metals and Materials (No. 2020-Z16), and the Fundamental Research Funds for the Central Universities (University of Science and Technology Bei**g) (No. 06500135).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuize Wang or Honghui Wu.

Additional information

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Wang, S., Wu, G. et al. Tribological properties of high-entropy alloys: A review. Int J Miner Metall Mater 29, 389–403 (2022). https://doi.org/10.1007/s12613-021-2373-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2373-4

Keywords

Navigation