Log in

Highly efficient Ag/Ce–Zr catalyst for catalytic oxidation of NVOCs: balance of redox ability and acidity

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Due to the presence of nitrogen, nitrogen-containing volatile organic compounds (NVOCs) are more difficult to remove than conventional volatile organic compounds (VOCs). Both catalytic activity and N2 selectivity should be considered in the design of suitable catalysts. A series of Ag/Ce–Zr solid solution (Ag/CZ) catalysts were prepared and applied to the catalytic oxidation of N,N-dimethylformamide (DMF). Redox ability and acidity were regulated by modifying the Zr content. The introduction of Zr promoted the formation of active oxygen species until the molar ratio of Zr reached 0.5, after which the formation decreased. Moreover, adding Zr increased the number of weak and medium acidic sites, which significantly improved DMF adsorption. The improved DMF adsorption hindered the combination of nitrogen and active oxygen, thus reducing the generation of NOx effectively. Therefore, the Ag/CZ (5:5) catalyst, with suitable redox ability and acidity, exhibited the highest activity (T90 = 176 °C), the lowest elimination temperature of organic compounds (T = 255 °C), satisfactory N2 yield (95%–75% in the range of 240–400 °C), and outstanding stability under both common and humid conditions (at least 50 h). The reaction mechanism was investigated based on the in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) results. During the catalytic oxidation of DMF, the surface lattice oxygen directly participated in the dehydrogenation and dissociation of the C(O)–N bonds. The generated dimethylamine (DMA) was then oxidized by active oxygen species to form the final product.

Graphical abstract

摘要

含氮可挥发性有机物(NVOCs)由于其中N元素的存在,处理难度远高于一般的可挥发性有机物(VOCs)。在催化剂设计时,既要求其拥有较高的催化燃烧活性,又要尽量保证其N2选择性。因此,我们通过调变Zr的含量,合成了一系列氧化还原性能和酸性可调控的Ag/Ce-Zr固溶体催化剂用于N, N-二甲基甲酰胺(DMF)催化燃烧反应。在Zr的摩尔比达到0.5之前,活性氧物种含量随Zr的掺杂而逐渐升高;超过0.5之后,则随Zr的掺杂而逐渐降低。此外,Zr的掺杂还能显著提高催化剂的弱酸和中**酸位点,从而增**催化剂对DMF的吸附。催化剂对DMF吸附能力的增**又可以限制N元素与活性氧物种的结合,降低主要副产物NOx的生成。因此,拥有优秀氧化还原性能和适量酸性的Ag/CZ (5:5)催化剂表现出最佳的DMF催化燃烧活性(T90 = 176 °C)、最低的有机中间产物消除温度(T = 255 °C)、较高的N2选择性(在240-400 °C 区间内保持95%-75%)和出色的长时间稳定性。此外,我们还通过原位红外对反应机理进行了探究,发现在反应过程中首先发生DMF的脱氢和酰胺键的断裂,生成二甲胺。随后,二甲胺再借助活性氧物种被彻底氧化为最终的无机产物。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Huang FY, Ye DS, Guo XH, Zhan WC, Guo Y, Wang L, Wang YS, Guo YL. Effect of ceria morphology on the performance of MnOx/CeO2 catalysts in catalytic combustion of N,N-dimethylformamide. Catal Sci Technol. 2020;10:2473. https://doi.org/10.1039/C9CY02384D.

    Article  CAS  Google Scholar 

  2. Ren L, Zhao CF, Li ZY, Bai JL, Zhao XJ. Research progress on photothermocatalytic degradation of VOCs under full solar light. Chin J Rare Met. 2023;47(11):1556. https://doi.org/10.13373/j.cnki.cjrm.XY22080024.

    Article  Google Scholar 

  3. Li MQ, Cai YA, Zhan WC, Wang L, Dai QG, Guo Y, Wang AY, Guo YL. Revealing the effect of framework acidity on the catalytic combustion of vinyl chloride over zeolite-based catalysts. Sep Purif Technol. 2024;340:126773. https://doi.org/10.1016/j.seppur.2024.126773.

    Article  CAS  Google Scholar 

  4. Gao F, Mei DH, Wang YL, Szanyi J, Peden CHF. Selective catalytic reduction over Cu/SSZ-13: linking homo- and heterogeneous catalysis. J Am Chem Soc. 2017;139:4935. https://doi.org/10.1021/jacs.7b01128.

    Article  CAS  PubMed  Google Scholar 

  5. Tang X, Ye JJ, Guo LS, Pu TC, Cheng L, Cao XM, Guo YL, Wang L, Guo Y, Zhan WC, Dai S. Atomic insights into the Cu species supported on zeolite for direct oxidation of methane to methanol via low-damage HAADF-STEM. Adv Mater. 2023;35:2208504. https://doi.org/10.1002/adma.202208504.

    Article  CAS  Google Scholar 

  6. Wei XL, Wang S, Xu DK, Wang SD. Mechanistic insights on the reaction behaviors of the acrylonitrile selective catalytic combustion over Cu-based UZM-9. J Hazard Mater. 2020;392:122497. https://doi.org/10.1016/j.jhazmat.2020.122497.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang RD, Shi DJ, Liu N, Cao Y, Chen BH. Mesoporous SBA-15 promoted by 3d-transition and noble metals for catalytic combustion of acetonitrile. Appl Catal B Environ. 2014;146:79. https://doi.org/10.1016/j.apcatb.2013.03.028.

    Article  CAS  Google Scholar 

  8. Ma MD, Huang H, Chen CW, Zhu Q, Yue L, Albilali R, He C. Highly active SBA-15-confined Pd catalyst with short rod-like micro-mesoporous hybrid nanostructure for n-butylamine low-temperature destruction. Mol Catal. 2018;455:192. https://doi.org/10.1016/j.mcat.2018.06.016.

    Article  CAS  Google Scholar 

  9. Liu N, Shi DJ, Zhang RD, Li YX, Chen BH. Highly selective catalytic combustion of acrylonitrile towards nitrogen over Cu-modified zeolites. Catal Today. 2019;332:201. https://doi.org/10.1016/j.cattod.2018.04.054.

    Article  CAS  Google Scholar 

  10. **ng X, Li N, Sun YG, Wang G, Cheng J, Hao ZP. Selective catalytic oxidation of n-butylamine over Cu-zeolite catalysts. Catal Today. 2020;339:192. https://doi.org/10.1016/j.cattod.2018.12.001.

    Article  CAS  Google Scholar 

  11. Zhao T, Duan X, Niu B, Li G, Zhang B, Zhang J, Zhang Z, Cheng J, Hao Z. A [Cu2O2]2+ core in Cu/ZSM-5 for efficient selective catalytic oxidation of nitrogen-containing VOCs and NH3. ACS ES&T Eng. 2024. https://doi.org/10.1021/acsestengg.3c00533.

    Article  Google Scholar 

  12. Cao SY, Ye F, Zhang NN, Guo YL, Guo Y, Wang L, Dai S, Zhan WC. Synergistic effect of bimetallic RuPt/TiO2 catalyst in methane combustion. Rare Met. 2023;42(1):165. https://doi.org/10.1007/s12598-022-02118-7.

    Article  CAS  Google Scholar 

  13. Nanba T, Masukawa S, Uchisawa J, Obuchi A. Screening of catalysts for acrylonitrile decomposition. Catal Lett. 2004;93:195. https://doi.org/10.1023/B:CATL.0000017076.63005.56.

    Article  CAS  Google Scholar 

  14. Nanba T, Masukawa S, Uchisawa J, Obuchi A. Influence of TiO2 crystal structure on acrylonitrile decomposition over Ag/TiO2. Appl Catal A Gen. 2012;419:49. https://doi.org/10.1016/j.apcata.2012.01.009.

    Article  CAS  Google Scholar 

  15. Nanba T, Masukawa S, Uchisawa J, Obuchi A. Effect of support materials on Ag catalysts used for acrylonitrile decomposition. J Catal. 2008;259:250. https://doi.org/10.1016/j.jcat.2008.08.013.

    Article  CAS  Google Scholar 

  16. Xu GY, Zhang Y, Lin JG, Wang YB, Shi XY, Yu YB, He H. Unraveling the mechanism of ammonia selective catalytic oxidation on Ag/Al2O3 catalysts by operando spectroscopy. ACS Catal. 2021;11:5506. https://doi.org/10.1021/acscatal.1c01054.

    Article  CAS  Google Scholar 

  17. Wang F, He GZ, Zhang B, Chen M, Chen XY, Zhang CB, He H. Insights into the activation effect of H2 pretreatment on Ag/Al2O3 catalyst for the selective oxidation of ammonia. ACS Catal. 2019;9:1437. https://doi.org/10.1021/acscatal.8b03744.

    Article  CAS  Google Scholar 

  18. Yang XW, Wang AY, Guo JF, Guo YL, Guo Y, Wang L, Zhan WC. γ-Al2O3 supported silver nanoparticle applied in C3H8-SCR: nanosphere and nanoflake. Catal Commun. 2023;176:106634. https://doi.org/10.1016/j.catcom.2023.106634.

    Article  CAS  Google Scholar 

  19. Wang J, You R, Qian K, Pan Y, Yang JZ, Huang WX. Effect of the modification of alumina supports with chloride on the structure and catalytic performance of Ag/Al2O3 catalysts for the selective catalytic reduction of NOx with propene and H2/propene. Chin J Catal. 2021;42:2242. https://doi.org/10.1016/s1872-2067(21)63904-9.

    Article  CAS  Google Scholar 

  20. Xu GY, Wang HH, Yu YB, He H. Role of silver species in H2-NH3-SCR of NOx over Ag/Al2O3 catalysts: operando spectroscopy and DFT calculations. J Catal. 2021;395:1. https://doi.org/10.1016/j.jcat.2020.12.025.

    Article  CAS  Google Scholar 

  21. Zhao Z, Zhao WX, Zhang YQ, Cui MS, Hou YK, Chen DM, Yang JY, Feng ZY, Huang XW. A novel Ce 0.485Zr0.485Y0.03O2 composite oxide with surface do** of Y and its application in Pd-only three-way catalyst. Rare Met. 2024;43(2):749. https://doi.org/10.1007/s12598-023-02495-7

    Article  CAS  Google Scholar 

  22. Wang JJ, Lai XX, Zhang HL, Zhou XY, Lin T, Wang JL, Chen YQ. Low-temperature toluene oxidation on Ag/CexZr1-xO2 monolithic catalysts: synergistic catalysis of silver and ceria-zirconia. Combust Flame. 2023;248:112577. https://doi.org/10.1016/j.combustflame.2022.112577.

    Article  CAS  Google Scholar 

  23. **ng X, Zhao T, Cheng J, Duan XX, Li WP, Li GG, Zhang ZS, Hao ZP. Promotional effect of Cu additive for the selective catalytic oxidation of n-butylamine over CeZrOx catalyst. Chin Chem Lett. 2022;33:3065. https://doi.org/10.1016/j.cclet.2021.09.056.

    Article  CAS  Google Scholar 

  24. Kaminski P, Ziolek M. Mobility of gold, copper and cerium species in Au, Cu/Ce, Zr-oxides and its impact on total oxidation of methanol. Appl Catal B Environ. 2016;187:328. https://doi.org/10.1016/j.apcatb.2016.01.040.

    Article  CAS  Google Scholar 

  25. Yang ZZ, Hu W, Zhang N, Li YX, Liao YW. Facile synthesis of ceria–zirconia solid solutions with cubic–tetragonal interfaces and their enhanced catalytic performance in diesel soot oxidation. J Catal. 2019;377:98. https://doi.org/10.1016/j.jcat.2019.06.029.

    Article  CAS  Google Scholar 

  26. Mamontov E, Egami T, Brezny R, Koranne M, Tyagi S. Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia. J Phys Chem B. 2000;104:11110. https://doi.org/10.1021/jp0023011.

    Article  CAS  Google Scholar 

  27. Huang Y, Liu S, Pei MM, Li JY, Xu HD, Chen YQ. Unveiling H2O2-optimized NOx adsorption-selective catalytic reduction (AdSCR) performance of WO3/CeZrO2 catalyst. Rare Met. 2023;42:3755. https://doi.org/10.1007/s12598-023-02369-y.

    Article  CAS  Google Scholar 

  28. Grabchenko MV, Mamontov GV, Zaikovskii VI, La Parola V, Liotta LF, Vodyankina OV. The role of metal-support interaction in Ag/CeO2 catalysts for CO and soot oxidation. Appl Catal B Environ. 2020;260:118148. https://doi.org/10.1016/j.apcatb.2019.118148.

    Article  CAS  Google Scholar 

  29. Si R, Zhang YW, Li SJ, Lin BX, Yan CH. Urea-based hydrothermally derived homogeneous nanostructured Ce1xZrxO2 (x = 0−0.8) solid solutions a strong correlation between oxygen storage capacity and lattice strain. J Phys Chem B. 2004;108(33):12481.

    Article  CAS  Google Scholar 

  30. Zhao Z, Ma J, Li M, Liu W, Wu XD, Liu S. Model Ag/CeO2 catalysts for soot combustion: roles of silver species and catalyst stability. Chem Eng J. 2022;430:132802. https://doi.org/10.1016/j.cej.2021.132802.

    Article  CAS  Google Scholar 

  31. Gong XQ, Selloni A, Dulub O, Jacobson P, Diebold U. Small Au and Pt clusters at the anatase TiO2(101) surface: behavior at terraces, steps, and surface oxygen vacancies. J Am Chem Soc. 2008;130:370. https://doi.org/10.1021/ja0773148.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang YK, Wang YH, Su KB, Wang FP. The influence of the oxygen vacancies on the Pt/TiO2 single-atom catalyst—a DFT study. J Mol Model. 2022;28:175. https://doi.org/10.1007/s00894-022-05123-w.

    Article  CAS  PubMed  Google Scholar 

  33. Lee JH, Lee SH, Choung JW, Kim CH, Lee KY. Ag-incorporated macroporous CeO2 catalysts for soot oxidation: effects of Ag amount on the generation of active oxygen species. Appl Catal B Environ. 2019;246:356. https://doi.org/10.1016/j.apcatb.2019.01.064.

    Article  CAS  Google Scholar 

  34. Xu B, Jia L, Yang H, Wang Y, Fan SY, Yuan SS, Zhang QT, Zhang M, Ohno T. Improved photocatalytic performance of acetaldehyde degradation via crystal plane regulation on truncated octahedral CeO2. Rare Met. 2024. https://doi.org/10.1007/s12598-023-02566-9.

    Article  Google Scholar 

  35. Wang D, Yin FX, Cheng B, **a Y, Yu JG, Ho WK. Enhanced photocatalytic activity and mechanism of CeO2 hollow spheres for tetracycline degradation. Rare Met. 2021;40(9):2369. https://doi.org/10.1007/s12598-021-01731-2.

    Article  CAS  Google Scholar 

  36. Guo XH, Dong CX, Gao MXZ, Ye DS, Dai QG, Zhan WC, Wang ZQ, Wang L, Wang AY, Guo Y, Guo YL. Crystal-facet-dependent activity and N2 yield of Ag/CeO2 catalysts for catalytic oxidation of N N-dimethylformamide. Appl Catal B Environ. 2024;341:123286. https://doi.org/10.1016/j.apcatb.2023.123286.

    Article  CAS  Google Scholar 

  37. Cai YA, Li MQ, Gao MXZ, **e BC, Wang AY, Zhan WC, Wang L, Dai QG, Guo Y, Guo YL. Effect of acid sites modification on the catalytic combustion of 1,2-dichloroethane: revealing the synergy between NbOx and CeO2. Sep Purif Technol. 2024;334:126069. https://doi.org/10.1016/j.seppur.2023.126069.

    Article  CAS  Google Scholar 

  38. Chen BS, Wen YX, Gao S, Cao S, Fu HL, Ding T, Wang HQ, Wu ZB. Mechanistic insights into the role of acidity to activity and anti-poisoning over Nb based catalysts for CVOCs combustion. Appl Catal A Gen. 2022;636:118581. https://doi.org/10.1016/j.apcata.2022.118581.

    Article  CAS  Google Scholar 

  39. Li GB, Shen K, Wang L, Zhang YP, Yang HQ, Wu P, Wang B, Zhang SL. Synergistic degradation mechanism of chlorobenzene and NOx over the multi-active center catalyst: the role of NO2, brønsted acidic site, oxygen vacancy. Appl Catal B Environ. 2021;286:119865. https://doi.org/10.1016/j.apcatb.2020.119865.

    Article  CAS  Google Scholar 

  40. Lin JL, Lin YC, Lin BC, Lai PC, Chien TE, Li SH, Lin YF. Adsorption and reactions on TiO2: comparison of N, N-dimethylformamide and dimethylamine. J Phys Chem C. 2014;118:20291. https://doi.org/10.1021/jp5044859.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities, National Key Research and Development Program of China (Nos. 2023YFA1508500, 2023YFC3707500 and 2022YFB3504200) and the National Natural Science Foundation of China (Nos. 22106101 and U21A20326).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ai-Yong Wang or Yang-Long Guo.

Ethics declarations

Conflict of interests

Yun Guo is an editorial board member for Rare Metals and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3844 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, XH., Sun, SY., Gao, MXZ. et al. Highly efficient Ag/Ce–Zr catalyst for catalytic oxidation of NVOCs: balance of redox ability and acidity. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02889-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02889-1

Keywords

Navigation