Log in

Enhanced photocatalytic activity and mechanism of CeO2 hollow spheres for tetracycline degradation

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Recently, researchers have focused on designing and fabricating highly efficient catalysts for photocatalytic organic pollutant removal. Herein, CeO2 hollow spheres were prepared through a simple template method followed by calcination at different temperatures for the tetracycline (TC) degradation under simulated solar light illumination. With a calcination temperature ranging from 400 to 800 °C, the as-prepared CeO2 hollow structure annealed at 600 °C (C600) exhibited the best degradation performance with a degradation rate constant of 0.066 min−1, which was about six and five times higher than those of the uncalcined sample (C0) and the sample calcined at 800 °C (C800), respectively. Moreover, sample C600 was also superior to the CeO2 solid particle photocatalyst. The characterisation results showed that the improved photocatalytic performance was mainly ascribed to the synergistic effect of large specific surface areas, high crystallisation and excellent light scattering ability. Furthermore, the results of active species trap** experiments demonstrated that the superoxide anion (•O2) radical and hole (h+) played dominant roles in TC degradation. Subsequently, the possible TC degradation pathways and photocatalytic mechanism of CeO2 hollow spheres were proposed on the basis of high-performance liquid chromatography–mass spectrometry analysis, main active species and band edge positions of CeO2. The results of this study provide a basis for designing and exploring hollow structure catalysts for energy conversion and environmental remediation.

Graphical abstract

摘要

**年来, 设计和制备高活性光催化剂应用于降解有机污染物领域受到了研究者们的广泛关注。在此, 本工作利用模板法和高温煅烧法制备了二氧化铈空心球, 并在模拟太阳光照射下将其应用于降解四环素。实验结果表明:在400-800 °C 煅烧温度范围内, 600 °C煅烧条件下所得的样品 (C600) 表现出最佳光催化性能, 其降解速率常数为0.066 min-1, 这一降解速率常数值分别为未煅烧二氧化铈空心球 (C0) 的6倍和800 °C煅烧条件下制得二氧化铈空心球(C800)的5倍。同时, 该催化剂的光催化性能远优于二氧化铈纳米颗粒。该增**效应得益于C600较大的比表面积、高的结晶性、良好的光子捕获能力。活性物种捕获实验揭示了二氧化铈空心球光催化降解四环素过程中主要活性物种为•O2和 h+。此外, 通过对反应过程中间体的测试和二氧化铈带隙的表征, 提出了四环素在光催化降解过程中的反应路径。本工作为设计和探索空心结构催化剂应用于环境修复方面奠定了基础。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fan Y, ** X, Liu Y, Nie Z, Zhao L, Zhang Q. Regulation of morphology and visible light driven photocatalysis of WO3 nanostructures by changing pH. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01490-6.

    Article  Google Scholar 

  2. Guo S, Luo H, Li Y, Chen J, Mou B, Shi X, Sun G. Structure-controlled three-dimensional BiOI/MoS2 microspheres for boosting visible light photocatalytic degradation of tetracycline. J Alloys Compd. 2021;852:157026.

    CAS  Google Scholar 

  3. Ferraz N, Nogueira A, Marcos FCF, Machado V, Rocca R, Assaf E. CeO2–Nb2O5 photocatalysts for degradation of organic pollutants in water. Rare Met. 2020;39(3):230.

    CAS  Google Scholar 

  4. Shi W, Guo F, Yuan S. In situ synthesis of Z-scheme Ag3PO4/CuBi2O4 photocatalysts and enhanced photocatalytic performance for the degradation of tetracycline under visible light irradiation. Appl Catal B Environ. 2017;209:720.

    CAS  Google Scholar 

  5. Qin D, **a Y, Li Q, Yang C, Qin Y, Lv K. One-pot calcination synthesis Cd0.5Zn0.5S/g-C3N4 of photocatalyst with a step-scheme heterojunction structure. J Mater Sci Technol. 2020;56:206.

    Google Scholar 

  6. Jiang D, Wang T, Xu Q, Li D, Meng S, Chen M. Perovskite oxide ultrathin nanosheets/g-C3N4 2D–2D heterojunction photocatalysts with significantly enhanced photocatalytic activity towards the photodegradation of tetracycline. Appl Catal B Environ. 2017;201:617.

    CAS  Google Scholar 

  7. Ren L, Zhou W, Sun B, Li H, Qiao P, Xu Y, Wu J, Lin K, Fu H. Defects-engineering of magnetic γ-Fe2O3 ultrathin nanosheets/mesoporous black TiO2 hollow sphere heterojunctions for efficient charge separation and the solar-driven photocatalytic mechanism of tetracycline degradation. Appl Catal B Environ. 2019;240:319.

    CAS  Google Scholar 

  8. Wang H, Liao B, Lu T, Ai Y, Liu G. Enhanced visible-light photocatalytic degradation of tetracycline by a novel hollow BiOCl@CeO2 heterostructured microspheres: structural characterization and reaction mechanism. J Hazard Mater. 2020;385:121552.

    CAS  Google Scholar 

  9. Yu H, Ge D, Liu Y, Lu Y, Wang X, Huo M, Qin W. One-pot synthesis of BiOCl microflowers co-modified with Mn and oxygen vacancies for enhanced photocatalytic degradation of tetracycline under visible light. Sep Purif Technol. 2020;251:117414.

    CAS  Google Scholar 

  10. Wang A, Zheng Z, Wang H, Chen Y, Luo C, Liang D, Hu B, Qiu R, Yan K. 3D hierarchical H2-reduced Mn-doped CeO2 microflowers assembled from nanotubes as a high-performance Fenton-like photocatalyst for tetracycline antibiotics degradation. Appl Catal B Environ. 2020;277:119171.

    CAS  Google Scholar 

  11. Wu X, Fu M, Lu P, Ren Q, Wang C. Unique electronic structure of Mg/O co-decorated amorphous carbon nitride enhances the photocatalytic tetracycline hydrochloride degradation. Chin J Catal. 2019;40(5):776.

    CAS  Google Scholar 

  12. Shao S, Hu Y, Cheng C, Cheng J, Chen Y. Simultaneous degradation of tetracycline and denitrification by a novel bacterium, Klebsiella sp SQY5. Chemosphere. 2018;209:35.

    CAS  Google Scholar 

  13. Ai C, Zhou D, Wang Q, Shao X, Lei Y. Optimization of operating parameters for photocatalytic degradation of tetracycline using In2S3 under natural solar radiation. Sol Energy. 2015;113:34.

    CAS  Google Scholar 

  14. Hu Q, Wang L, Yu N, Zhang Z, Zheng X, Hu X. Preparation of Fe3O4@C@TiO2 and its application for oxytetracycline hydrochloride adsorption. Rare Met. 2020;39(11):1333.

    Google Scholar 

  15. Luo P, Wang S, Zhao T, Li Y. Surface characteristics, corrosion behavior, and antibacterial property of Ag-implanted NiTi alloy. Rare Met. 2013;32(2):113.

    CAS  Google Scholar 

  16. Wu J, Zhang H, Oturan N, Wang Y, Chen L, Oturan MA. Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2-IrO2) anode. Chemosphere. 2012;87(6):614.

    CAS  Google Scholar 

  17. Guo F, Li M, Ren H, Huang X, Shu K, Shi W, Lu C. Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light. Sep Purif Technol. 2019;228:115770.

    CAS  Google Scholar 

  18. Zhao D, Tang J, Nie H, Zhang Y, Chen Y, Zhang X, Li H, Yan M. Macro-micron-nano-featured surface topography of Ti-6Al-4V alloy for biomedical applications. Rare Met. 2018;37(12):1055.

    CAS  Google Scholar 

  19. Guo F, Shi W, Wang H, Han M, Li H, Huang H, Liu Y, Kang Z. Facile fabrication of a CoO/g-C3N4 p–n heterojunction with enhanced photocatalytic activity and stability for tetracycline degradation under visible light. Catal Sci Technol. 2017;7(15):3325.

    CAS  Google Scholar 

  20. Gao H, Zhao X, Zhang H, Chen J, Wang S, Yang H. Construction of 2D/0D/2D face-to-face contact g-C3N4@Au@Bi4Ti3O12 heterojunction photocatalysts for degradation of rhodamine B. J Electron Mater. 2020;49(9):5248.

    CAS  Google Scholar 

  21. Li Y, Zhou M, Cheng B, Shao Y. Recent advances in g-C3N4-based heterojunction photocatalysts. J Mater Sci Technol. 2020;56:1.

    Google Scholar 

  22. Li Y, Li X, Zhang H, Fan J, **ang Q. Design and application of active sites in g-C3N4-based photocatalysts. J Mater Sci Technol. 2020;56:69.

    CAS  Google Scholar 

  23. Wang J, Qian Q, Chen Q, Liu X, Luo Y, Xue H, Li Z. Significant role of carbonate radicals in tetracycline hydrochloride degradation based on solar light-driven TiO2-seashell composites: removal and transformation pathways. Chin J Catal. 2020;41(10):1511.

    CAS  Google Scholar 

  24. Zhong S, Lv C, Zou S, Zhang F, Zhang S. Preparation of pumice-loaded CeO2/Bi2WO6 photocatalysts and treatment of tetracycline wastewater with a continuous flow photocatalytic reactor. J Mater Sci Mater El. 2017;29(3):2447.

    Google Scholar 

  25. Li C, Yu S, Che H, Zhang X, Han J, Mao Y, Wang Y, Liu C, Dong H. Fabrication of Z-scheme heterojunction by anchoring mesoporous γ-Fe2O3 nanospheres on g-C3N4 for degrading tetracycline hydrochloride in water. ACS Sustain Chem Eng. 2018;6(12):16437.

    CAS  Google Scholar 

  26. Guo F, Cai Y, Guan W, Huang H, Liu Y. Graphite carbon nitride/ZnIn2S4 heterojunction photocatalyst with enhanced photocatalytic performance for degradation of tetracycline under visible light irradiation. J Phys Chem Solids. 2017;110:370.

    CAS  Google Scholar 

  27. Liu X, Gu S, Zhao Y, Zhou G, Li W. BiVO4, Bi2WO6 and Bi2MoO6 photocatalysis: a brief review. J Mater Sci Technol. 2020;56:45.

    Google Scholar 

  28. Wang R, Shi M, Xu F, Qiu Y, Zhang P, Shen K, Zhao Q, Yu J, Zhang Y. Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection. Nature Commun. 2020;11(1):4465.

    CAS  Google Scholar 

  29. Yu W, Zhang J, Peng T. New insight into the enhanced photocatalytic activity of N-, C- and S-doped ZnO photocatalysts. Appl Catal B Environ. 2016;181:220.

    CAS  Google Scholar 

  30. Gao D, Yuan R, Fan J, Hong X, Yu H. Highly efficient S2−-adsorbed MoSx-modified TiO2 photocatalysts: a general grafting strategy and boosted interfacial charge transfer. J Mater Sci Technol. 2020;56:122.

    Google Scholar 

  31. Gao R, Cheng B, Fan J, Yu J, Ho W. ZnxCd1–xS quantum dot with enhanced photocatalytic H2 production performance. Chin J Catal. 2021;42(1):15.

    CAS  Google Scholar 

  32. Liu Y, **ao Z, Cao S, Li J, Piao L. Controllable synthesis of Au-TiO2 nanodumbbell photocatalysts with spatial redox region. Chin J Catal. 2020;41(1):219.

    CAS  Google Scholar 

  33. Huang G, Liu X, Shi S, Li S, **ao Z, Zhen W, Liu S, Wong P. Hydrogen producing water treatment through mesoporous TiO2 nanofibers with oriented nanocrystals. Chin J Catal. 2020;41(1):50.

    CAS  Google Scholar 

  34. Yu C, Wei L, Chen J, Zhou W, Fan Q, Yu J. Novel AgCl/Ag2CO3 heterostructured photocatalysts with enhanced photocatalytic performance. Rare Met. 2016;35(6):475.

    CAS  Google Scholar 

  35. Mei Z, Wang G, Yan S, Wang J. Rapid microwave-assisted synthesis of 2D/1D ZnIn2S4/TiO2 S-scheme heterojunction for catalyzing photocatalytic hydrogen evolution. Acta Phys Chim Sin. 2021;37(6):2009097.

    Google Scholar 

  36. **ang X, Zhu B, Cheng B, Yu J, Lv H. Enhanced photocatalytic H2 production activity of CdS quantum dots using Sn2+ as cocatalyst under visible light irradiation. Small. 2020;16(26):2001024.

    CAS  Google Scholar 

  37. Kuang P, Low J, Cheng B, Yu J, Fan J. MXene-based photocatalysts. J Mater Sci Technol. 2020;56:18.

    Google Scholar 

  38. Wang Z, Fan J, Cheng B, Yu J, Xu J. Nickel-based cocatalysts for photocatalysis: hydrogen evolution, overall water splitting and CO2 reduction. Mater Today Phys. 2020;15:100279.

    Google Scholar 

  39. Kuang P, Sayed M, Fan J, Cheng B, Yu J. 3D graphene-based H2-production photocatalyst and electrocatalyst. Adv Energy Mater. 2019;10(14):1903802.

    Google Scholar 

  40. Deng W, Chen D, Chen L. Synthesis of monodisperse CeO2 hollow spheres with enhanced photocatalytic activity. Ceram Int. 2015;41(9):11570.

    CAS  Google Scholar 

  41. Yang R, Cai J, Lv K, Wu X, Wang W, Xu Z, Li M, Li Q, Xu W. Fabrication of TiO2 hollow microspheres assembly from nanosheets (TiO2-HMSs-NSs) with enhanced photoelectric conversion efficiency in DSSCs and photocatalytic activity. Appl Catal B Environ. 2017;210:184.

    CAS  Google Scholar 

  42. Liu T, Zhang L, Cheng B, Yu J. Hollow carbon spheres and their hybrid nanomaterials in electrochemical energy storage. Adv Energy Mater. 2019;9(17):1803900.

    Google Scholar 

  43. **a Y, Yu J. Reaction: rational design of highly active photocatalysts for CO2 conversion. Chem. 2020;6(5):1039.

    CAS  Google Scholar 

  44. Yang C, Yang J, Duan X, Hu G, Liu Q, Ren S, Li J, Kong M. Roles of photo-generated holes and oxygen vacancies in enhancing photocatalytic performance over CeO2 prepared by molten salt method. Adv Powder Technol. 2020;31(9):4072.

    CAS  Google Scholar 

  45. Amoresi RAC, Oliveira RC, Marana NL, Almeida PB, Prata PS, Zaghete MA, Longo E, Sambrano JR, Simões AZ. CeO2 nanoparticle morphologies and their corresponding crystalline planes for the photocatalytic degradation of organic pollutants. ACS Appl Nano Mater. 2019;2(10):6513.

    CAS  Google Scholar 

  46. Li J, Wu X, Liu S. Fluorinated TiO2 hollow photocatalysts for photocatalytic applications. Acta Phys Chim Sin. 2021;37(6):2009038.

    Google Scholar 

  47. Bie C, Zhu B, Xu F, Zhang L, Yu J. In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO2 reduction. Adv Mater. 2019;31(42):1902868.

    CAS  Google Scholar 

  48. **a P, Cao S, Zhu B, Liu M, Shi M, Yu J, Zhang Y. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew Chem Int Ed. 2020;59(13):5218.

    CAS  Google Scholar 

  49. Cui Z, Zhou H, Wang G, Zhang Y, Zhang H, Zhao H. Enhancement of the visible-light photocatalytic activity of CeO2 by chemisorbed oxygen in the selective oxidation of benzyl alcohol. New J Chem. 2019;43(19):7355.

    CAS  Google Scholar 

  50. Hezam A, Namratha K, Drmosh QA, Ponnamma D, Wang J, Prasad S, Ahamed M, Cheng C, Byrappa K. CeO2 nanostructures enriched with oxygen vacancies for photocatalytic CO2 reduction. ACS Appl Nano Mater. 2019;3(1):138.

    Google Scholar 

  51. Sayed S, Rouby W, Farghali A. Preparation and characterization of (CeO2)x–(Fe2O3)1–x nanocomposites: reduction kinetics and hydrogen storage. Rare Met. 2020;39(3):218.

    CAS  Google Scholar 

  52. **a Y, Cheng B, Fan J, Yu J, Liu G. Unraveling photoexcited charge transfer pathway and process of CdS/graphene nanoribbon composites toward visible-light photocatalytic hydrogen evolution. Small. 2019;15(34):1902459.

    Google Scholar 

  53. Wang J, Wang G, Cheng B, Yu J, Fan J. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chin J Catal. 2021;42(1):56.

    CAS  Google Scholar 

  54. Deng H, Xu F, Cheng B, Yu J, Ho W. Photocatalytic CO2 reduction of C/ZnO nanofibers enhanced by Ni-NiS cocatalyst. Nanoscale. 2020;12(13):7206.

    CAS  Google Scholar 

  55. Li Q, **a Y, Yang C, Lv K, Lei M, Li M. Building a direct Z-scheme heterojunction photocatalyst by ZnIn2S4 nanosheets and TiO2 hollowspheres for highly-efficient artificial photosynthesis. Chem Eng J. 2018;349:287.

    CAS  Google Scholar 

  56. **a Y, Li Q, Lv K, Li M. Heterojunction construction between TiO2 hollowsphere and ZnIn2S4 flower for photocatalysis application. Appl Surf Sci. 2017;398:81.

    CAS  Google Scholar 

  57. Yang G, Liang Y, Li K, Yang J, Xu R, **e X. Construction of a Ce3+ doped CeO2/Bi2MoO6 heterojunction with a mutual component activation system for highly enhancing the visible-light photocatalytic activity for removal of TC or Cr(VI). Inorg Chem Front. 2019;6(6):1507.

    CAS  Google Scholar 

  58. Shen J, Shen J, Zhang W, Yu X, Tang H, Zhang M, Zulfiqar Liu Q. Built-in electric field induced CeO2/Ti3C2-MXene schottky-junction for coupled photocatalytic tetracycline degradation and CO2 reduction. Ceram Int. 2019;45(18):24146.

    CAS  Google Scholar 

  59. Xu F, Meng K, Cheng B, Wang S, Xu J, Yu J. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr 3 hybrids for Co2 photoreduction. Nature Commun. 2020;11(1):4613.

    CAS  Google Scholar 

  60. **a Y, Tian Z, Heil T, Meng A, Cheng B, Cao S, Yu J, Antonietti M. Highly selective CO2 capture and its direct photochemical conversion on ordered 2D/1D heterojunctions. Joule. 2019;3(11):2792.

    CAS  Google Scholar 

  61. Wang Z, Chen Y, Zhang L, Cheng B, Yu J, Fan J. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity. J Mater Sci Technol. 2020;56:143.

    Google Scholar 

  62. **a Y, Cheng B, Fan J, Yu J, Liu G. Near-infrared absorbing 2D/3D ZnIn2S4/N-doped graphene photocatalyst for highly efficient CO2 capture and photocatalytic reduction. Sci China Mater. 2020;63(4):552.

    CAS  Google Scholar 

  63. Cheng T, Sun X, **an T, Yi Z, Li R, Wang X, Yang H. Tert-butylamine/oleic acid-assisted morphology tailoring of hierarchical Bi4Ti3O12 architectures and their application for photodegradation of simulated dye wastewater. Opt Mater. 2021;112:110781.

    CAS  Google Scholar 

  64. Li J, Wang S, Sun G, Gao H, Yu X, Tang S, Zhao X, Yi Z, Wang Y, Wei Y. Facile preparation of MgAl2O4/CeO2/Mn3O4 heterojunction photocatalyst and enhanced photocatalytic activity. Mater Today Chem. 2021;19:100390.

    CAS  Google Scholar 

  65. Kubiak A, Bielan Z, Kubacka M, Gabala E, Zgola-Grzeskowiak A, Janczarek M, Zalas M, Zielinska-Jurek A, Siwińska-Ciesielczyk K, Jesionowski T. Microwave-assisted synthesis of a TiO2-CuO heterojunction with enhanced photocatalytic activity against tetracycline. Appl Surf Sci. 2020;520:146344.

    CAS  Google Scholar 

  66. Wang J, Zhi D, Zhou H, He X, Zhang D. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode. Water Res. 2018;137:324.

    CAS  Google Scholar 

  67. Cherifi Y, Addad A, Vezin H, Barras A, Ouddane B, Chaouchi A, Szunerits S, Boukherroub R. PMS activation using reduced graphene oxide under sonication: efficient metal-free catalytic system for the degradation of rhodamine B, bisphenol A, and tetracycline. Ultrason Sonochem. 2019;52:164.

    CAS  Google Scholar 

  68. Li J, Han M, Guo Y, Wang F, Meng L, Mao D, Ding S, Sun C. Hydrothermal synthesis of novel flower-like BiVO4/Bi2Ti2O7 with superior photocatalytic activity toward tetracycline removal. Appl Catal A: Gen. 2016;524:105.

    CAS  Google Scholar 

  69. Gao X, Niu J, Wang Y, Ji Y, Zhang Y. Solar photocatalytic abatement of tetracycline over phosphate oxoanion decorated Bi2WO6/polyimide composites. J Hazard Mater. 2021;403:123860.

    CAS  Google Scholar 

  70. Huan H, Jile H, Tang Y, Li X, Yi Z, Gao X, Chen X, Chen J, Wu P. Fabrication of ZnO@Ag@Ag3PO4 ternary heterojunction: superhydrophilic properties, antireflection and photocatalytic properties. Micromachines. 2020;11(3):309.

    Google Scholar 

  71. Ye M, Chen Z, Wang W, Shen J, Ma J. Hydrothermal synthesis of TiO2 hollow microspheres for the photocatalytic degradation of 4-chloronitrobenzene. J Hazard Mater. 2010;184(1–3):612.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51961135303, 51932007, 21871217, U1905215 and U1705251), the Innovative Research Funds of Foshan **anhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (No. XHD2020-001), the National Postdoctoral Program for Innovative Talents (No. BX20200261), China Postdoctoral Science Foundation (No. 2020M682501) and Dean Research Fund (Nos. 04530 and 04554), EdUHK.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang **a, Jia-Guo Yu or Wing-Kei Ho.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3806 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Yin, FX., Cheng, B. et al. Enhanced photocatalytic activity and mechanism of CeO2 hollow spheres for tetracycline degradation. Rare Met. 40, 2369–2380 (2021). https://doi.org/10.1007/s12598-021-01731-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01731-2

Keywords

Navigation