Log in

Two-dimensional metallic CoTe2 flakes for electrocatalytic hydrogen evolution

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) metallic 1T-CoTe2 has attracted considerable attention due to its fascinating physical properties and promising applications in electronics and catalysis. However, the production of high-quality 2D 1T-CoTe2 still remains challenging. Herein, we demonstrate a methodology to realize the facile synthesis of ultrathin, high-quality CoTe2 flakes with a thickness down to 2.3 nm on mica substrates by an ambient-pressure chemical vapor deposition (CVD) technique. The atomic arrangement is verified by scanning transmission electron microscopy. The theoretical calculations uncover the metallic characteristic of 1T-CoTe2 in the 2D limit. Remarkably, the CVD-derived 2D metallic CoTe2 flakes for the hydrogen evolution reaction (HER) catalyst exhibit admirable performance, such as an overpotential of 186 mV at 10 mA·cm−2, a Tafel slope of 78 mV·dec−1, an exchange current density of 69 μA·cm−2, and negligible performance degradation after 1000 cycles. These results establish novel approaches for the synthesis and HER application of 2D metallic 1T-CoTe2.

Graphical abstract

摘要

二维(2D)金属性1T-CoTe2因其迷人的物理性质以及在电子和催化领域具有重要应用而受到广泛关注。然而,高质量2D 1T-CoTe2的制备仍然具有挑战性。在此,我们通过常压化学气相沉积(CVD)技术,展示了一种在云母衬底上合成厚度薄至2.3 nm的高质量CoTe2薄片的简便方法。利用扫描透射电子显微镜,获得了1T-CoTe2的原子排列。此外,理论计算揭示了2D极限下1T-CoTe2的金属特性。值得注意的是,CVD合成的2D金属性CoTe2薄片用于产氢反应(HER)催化剂时表现出优异的性能,如在10 mA·cm−2时的过电位为186 mV,Tafel斜率为78 mV·dec−1,交换电流密度为69 μA·cm−2,且经过1000个循环后性能基本不衰减。这些结果为2D金属性1T-CoTe2的合成和HER应用建立了新的方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shi ZT, Zhao HB, Chen XQ, Wu GM, Wei F, Tu HL. Chemical vapor deposition growth and transport properties of MoS2-2H thin layers using molybdenum and sulfur as precursors. Rare Met. 2022;41(10):3574. https://doi.org/10.1007/s12598-015-0599-x.

    Article  CAS  Google Scholar 

  2. Meng S, Yang Y, Dai XY, Tang Y, He MF, Gu YR, Jiang RB, Ding F, Xu H. Robust synthesis of large-area PtSe2 microbelts by step-induced separation growth on Au(001) substrate for the hydrogen evolution reaction. Adv Funct Mater. 2024;34(11):2312165. https://doi.org/10.1002/adfm.202312165.

    Article  CAS  Google Scholar 

  3. Zhang ZP, Niu JJ, Yang PF, Gong Y, Ji QQ, Shi JP, Fang QY, Jiang SL, Li H, Zhou XB, Gu L, Wu XS, Zhang YF. Van der Waals epitaxial growth of 2D metallic vanadium diselenide single crystals and their extra-high electrical conductivity. Adv Mater. 2017;29(37):1702359. https://doi.org/10.1002/adma.201702359.

    Article  CAS  Google Scholar 

  4. Li J, Zhao B, Chen P, Wu RX, Li B, **a QL, Guo GH, Luo J, Zang KT, Zhang ZW, Ma HF, Sun GZ, Duan XD, Duan XF. Synthesis of ultrathin metallic MTe2 (M = V, Nb, Ta) single-crystalline nanoplates. Adv Mater. 2018;30(36):1801043. https://doi.org/10.1002/adma.201801043.

    Article  CAS  Google Scholar 

  5. Sun X, Zhao Y, Chang K, Peng B, Gu QQ, Yang B, Yu BY, Xu J, Liu FD, Zhang Y, Pan CS, Lou Y. 1T-phase MoS2 edge-anchored Pt1-S3 active site boosting selective hydrogenation of biomass-derived maleic anhydride. Rare Met. 2023;42(8):2658. https://doi.org/10.1007/s12598-023-02299-9.

    Article  CAS  Google Scholar 

  6. Hao R, Feng QL, Wang XJ, Zhang YC, Li KS. Morphology-controlled growth of large-area PtSe2 films for enhanced hydrogen evolution reaction. Rare Met. 2022;41(4):1314. https://doi.org/10.1007/s12598-021-01877-z.

    Article  CAS  Google Scholar 

  7. Wang XG, Zhou Z, Zhang P, Zhang SQ, Ma Y, Yang WW, Wang H, Li BX, Meng LJ, Jiang HN, Cui SQ, Zhai PB, **ao J, Liu W, Zou XL, Bao LH, Gong YJ. Thickness-controlled synthesis of CoX2 (X = S, Se, and Te) single crystalline 2D layers with linear magnetoresistance and high conductivity. Chem Mater. 2020;32(6):2321. https://doi.org/10.1021/acs.chemmater.9b04416.

    Article  CAS  Google Scholar 

  8. Ma HF, Dang WQ, Yang XD, Li B, Zhang ZW, Chen P, Liu Y, Wan Z, Qian Q, Luo J, Zang KT, Duan XF, Duan XD. Chemical vapor deposition growth of single crystalline CoTe2 nanosheets with tunable thickness and electronic properties. Chem Mater. 2018;30(24):8891. https://doi.org/10.1021/acs.chemmater.8b04069.

    Article  CAS  Google Scholar 

  9. Lu TH, Chen CJ, Basu M, Ma CG, Liu RS. The CoTe2 nanostructure: an efficient and robust catalyst for hydrogen evolution. Chem Commun. 2015;51(95):17012. https://doi.org/10.1039/C5CC06806A.

    Article  CAS  Google Scholar 

  10. Siegfried PE, Bhandari H, Qi J, Ghimire R, Joshi J, Messegee ZT, Beeson WB, Liu K, Ghimire MP, Dang YL, Zhang HR, Davydov AV, Tan XY, Vora PM, Mazin II, Ghimire NJ. CoTe2: a quantum critical Dirac metal with strong spin fluctuations. Adv Mater. 2023;35(21):2300640. https://doi.org/10.1002/adma.202300640.

    Article  CAS  Google Scholar 

  11. Hu Z, Zhang LB, Chakraborty A, D’Olimpio G, Fujii J, Ge AP, Zhou YC, Liu CL, Agarwal A, Vobornik I, Farias D, Kuo CN, Lue CS, Politano A, Wang S-W, Hu WD, Chen XS, Lu W, Wang L. Terahertz nonlinear Hall rectifiers based on spin-polarized topological electronic states in 1T-CoTe2. Adv Mater. 2023;35(10):2209557. https://doi.org/10.1002/adma.202209557.

    Article  CAS  Google Scholar 

  12. Liu YY, Wu JJ, Hackenberg KP, Zhang J, Wang YM, Yang YC, Keyshar K, Gu J, Ogitsu T, Vajtai R, Lou J, Ajayan PM, Wood BC, Yakobson BI. Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat Energy. 2017;2:17127. https://doi.org/10.1038/nenergy.2017.127.

    Article  CAS  Google Scholar 

  13. Huan YH, Shi JP, Zou XL, Gong Y, Zhang ZP, Li MH, Zhao LY, Xu RZ, Jiang SL, Zhou XB, Hong M, **e CY, Li H, Lang XY, Zhang Q, Gu L, Yan XQ, Zhang YF. Vertical 1T-TaS2 synthesis on nanoporous gold for high-performance electrocatalytic applications. Adv Mater. 2018;30(15):1705916. https://doi.org/10.1002/adma.201705916.

    Article  CAS  Google Scholar 

  14. Huan YH, Shi JP, Zou XL, Gong Y, **e CY, Yang ZJ, Zhang ZP, Gao Y, Shi YP, Li MH, Yang PF, Jiang SL, Hong M, Gu L, Zhang Q, Yan XQ, Zhang YF. Scalable production of two-dimensional metallic transition metal dichalcogenide nanosheet powders using NaCl templates toward electrocatalytic applications. J Am Chem Soc. 2019;141(47):18694. https://doi.org/10.1021/jacs.9b06044.

    Article  CAS  PubMed  Google Scholar 

  15. Yu QM, Luo YT, Qiu SY, Li QY, Cai ZY, Zhang ZY, Liu JM, Sun CH, Liu BL. Tuning the hydrogen evolution performance of metallic 2D tantalum disulfide by interfacial engineering. ACS Nano. 2019;13(10):11874. https://doi.org/10.1021/acsnano.9b05933.

    Article  CAS  PubMed  Google Scholar 

  16. Shi JP, Huan YH, **ao MM, Hong M, Zhao XX, Gao YL, Cui FF, Yang PF, Pennycook SJ, Zhao JJ, Zhang YF. Two-dimensional metallic NiTe2 with ultrahigh environmental stability, conductivity, and electrocatalytic activity. ACS Nano. 2020;14(7):9011. https://doi.org/10.1021/acsnano.0c03940.

    Article  CAS  PubMed  Google Scholar 

  17. Shi JP, Huan YH, Zhao XX, Yang PF, Hong M, **e CY, Pennycook S, Zhang YF. Two-dimensional metallic vanadium ditelluride as a high-performance electrode material. ACS Nano. 2021;15(1):1858. https://doi.org/10.1021/acsnano.0c10250.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang GJ, Liu KH, Zhou JS. Cobalt telluride/graphene composite nanosheets for excellent gravimetric and volumetric Na-ion storage. J Mater Chem A. 2018;6(15):6335. https://doi.org/10.1039/C8TA01265B.

    Article  CAS  Google Scholar 

  19. Kang LX, Ye C, Zhao XX, Zhou XY, Hu JX, Li Q, Liu D, Das CM, Yang JF, Hu DY, Chen JQ, Cao X, Zhang Y, Xu MZ, Di J, Tian D, Song P, Kutty G, Zeng QS, Fu QD, Deng Y, Zhou JD, Ariando A, Miao F, Hong G, Huang YZ, Pennycook SJ, Yong K-T, Ji W, Wang XR, Liu Z. Phase-controllable growth of ultrathin 2D magnetic FeTe crystals. Nat Commun. 2020;11:3729. https://doi.org/10.1038/s41467-020-17253-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang Y, Zhang KX, Zhang LB, Hong G, Chen C, **g HM, Lu JB, Wang P, Chen XS, Wang L, Xu H. Controllable growth of type-II Dirac semimetal PtTe2 atomic layer on Au substrate for sensitive room temperature terahertz photodetection. InfoMat. 2021;3(6):705. https://doi.org/10.1002/inf2.12193.

    Article  CAS  Google Scholar 

  21. Ji QQ, Zhang YF, Gao T, Zhang Y, Ma DL, Liu MX, Chen YB, Qiao XF, Tan PH, Kan M, Feng J, Sun Q, Liu ZF. Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett. 2013;13(8):3870. https://doi.org/10.1021/nl401938t.

    Article  CAS  PubMed  Google Scholar 

  22. Su JW, Wang MS, Li Y, Wang FK, Chen Q, Luo P, Han JB, Wang S, Li HQ, Zhai TY. Sub-millimeter-scale monolayer p-type H-phase VS2. Adv Funct Mater. 2020;30(17):2000240. https://doi.org/10.1002/adfm.202000240.

    Article  CAS  Google Scholar 

  23. Jiang SL, Zhang C, Zhao ED, Han MJ, Zhu L, Zhao Y-Q. Synthesis of ultrathin PdSe2 flakes for hydrogen evolution reaction. Appl Surf Sci. 2021;570:151178. https://doi.org/10.1016/j.apsusc.2021.151178.

    Article  CAS  Google Scholar 

  24. Zhao ZJ, Zhou J, Liu LH, Liu NS, Huang JQ, Zhang B, Li W, Zeng Y, Zhang T, Ji W, Yang T, Zhang ZD, Li SL, Hou YL. Two-dimensional room-temperature magnetic nonstoichiometric Fe7Se8 nanocrystals: controllable synthesis and magnetic behavior. Nano Lett. 2022;22(3):1242. https://doi.org/10.1021/acs.nanolett.1c04403.

    Article  CAS  PubMed  Google Scholar 

  25. Chen C, Chen XD, Wu CW, Wang X, ** Y, Wei X, Zhou X, Lu JB, Zhu LJ, Zhou JD, Zhai TY, Han JB, Xu H. Air-stable 2D Cr5Te8 nanosheets with thickness-tunable ferromagnetism. Adv Mater. 2022;34(2):2107512. https://doi.org/10.1002/adma.202107512.

    Article  CAS  Google Scholar 

  26. Han MJ, Wang C, Niu KD, Yang QS, Wang CS, Zhang X, Dai JF, Wang YJ, Ma XL, Wang JL, Kang LX, Ji W, Lin JH. Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite. Nat Commun. 2022;13:5903. https://doi.org/10.1038/s41467-022-33617-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6(1):15. https://doi.org/10.1016/0927-0256(96)00008-0.

    Article  CAS  Google Scholar 

  28. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169. https://doi.org/10.1103/PhysRevB.54.11169.

    Article  CAS  Google Scholar 

  29. Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50(24):17953. https://doi.org/10.1103/PhysRevB.50.17953.

    Article  Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865. https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  PubMed  Google Scholar 

  31. Aghaee AK, Belbasi S, Hadipour H. Ab initio calculation of the effective Coulomb interactions in MX2 (M= Ti, V, Cr, Mn, Fe Co, Ni; X= S, Se, Te): intrinsic magnetic ordering and Mott phase. Phys Rev B. 2022;105(11):115115. https://doi.org/10.1103/PhysRevB.105.115115.

    Article  Google Scholar 

  32. Setyawan W, Curtarolo S. High-throughput electronic band structure calculations: challenges and tools. Comput Mater Sci. 2010;49(2):299. https://doi.org/10.1016/j.commatsci.2010.05.010.

    Article  Google Scholar 

  33. Zhou JD, Lin JH, Huang XW, Zhou Y, Chen Y, **a J, Wang H, **e Y, Yu HM, Lei JC, Wu D, Liu FC, Fu QD, Zeng QS, Hsu C-H, Yang CL, Lu L, Yu T, Shen ZX, Lin H, Yakobson BI, Liu Q, Suenaga K, Liu GT, Liu Z. A library of atomically thin metal chalcogenides. Nature. 2018;556:355. https://doi.org/10.1038/s41586-018-0008-3.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang SL, Yang J, Shi YP, Zhao J, **e CY, Zhao LY, Fu JT, Yang PF, Huan YH, **e Q, Jiang HC, Zhang Q, Wang XL, Su FH, Zhang YF. Salt-assisted growth and ultrafast photocarrier dynamics of large-sized monolayer ReSe2. Nano Res. 2020;13(3):667. https://doi.org/10.1007/s12274-020-2673-4.

    Article  CAS  Google Scholar 

  35. Jiang SL, Zhang ZP, Zhang N, Huan YH, Gong Y, Sun MX, Shi JP, **e CY, Yang PF, Fang QY, Li H, Tong LM, **e D, Gu L, Liu PR, Zhang YF. Application of chemical vapor–deposited monolayer ReSe2 in the electrocatalytic hydrogen evolution reaction. Nano Res. 2018;11(4):1787. https://doi.org/10.1007/s12274-017-1796-8.

    Article  CAS  Google Scholar 

  36. Zhao Y-Q, Zhu L, Zhou BJ, Jiang SL. Chemical vapor deposition of uniform bilayer PtS2 flakes for electrocatalytic hydrogen evolution. Phys Chem Chem Phys. 2023;25(16):11311. https://doi.org/10.1039/D3CP01164J.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 12204166).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang Yang or Shao-Long Jiang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1548 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, YQ., Liu, Q., Zhou, BJ. et al. Two-dimensional metallic CoTe2 flakes for electrocatalytic hydrogen evolution. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02790-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02790-x

Keywords

Navigation