Log in

Morphology-controlled growth of large-area PtSe2 films for enhanced hydrogen evolution reaction

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Transition metal dichalcogenides (TMDs) have emerged as a promising electrocatalyst for hydrogen evolution reaction (HER) due to its excellent conductivity and abundant electrocatalytic active sites of its edges. TMDs nanowall can expose abundant of edges so that they tend to show better catalytic performance for hydrogen evolution reaction. Herein, PtSe2 nanowall films with morphology controlled at centimeters level are synthesized by selenizing Pt film. The dynamic and thermodynamics of selenation reaction are investigated. The nanowall structure can be obtained by controlling the growth temperature, and the thickness of nanowall can be tuned by the original thickness of Pt film. The Pt atoms can be rearranged into ordered distribution at 550 °C and can be induced to well-ordered PtSe2 nanowalls finally. The well-ordered PtSe2 nanowall films show excellent HER performance, with an overpotential of 0.3 V at −10 mA·cm−2 and a Tafel slope of ∼52 mV·dec−1. This work demonstrates the great potential of activated 2D PtSe2 as an ultrathin film catalyst for the HER, which is valuable to provide instruction and afford experience for further application at industrial level.

Graphic abstract

摘要

过渡金属硫族化合物(TMDs)因其优异的导电性和丰富的层边缘电催化活性位点而有望成为一种很有前景高效的析氢反应催化剂。纳米墙结构的TMDs可以暴露出更多的边缘, 从而在析氢反应中表现出更佳的催化性能。本文通过硒化蒸镀金属铂(Pt)的薄膜合成了厘米级尺寸上形貌可控的PtSe2纳米墙薄膜。研究了硒化反应的动力学和热力学过程, 通过控制生长温度可获得纳米墙结构, 薄膜厚度可通过调整Pt薄膜的初始厚度来实现。在550 ℃时, 可获得按一定规则、紧密且有序排列的PtSe2纳米墙连续薄膜。有序排列的PtSe2纳米墙薄膜表现出更优的析氢反应性能, 在-10 mA·cm−2下过电位为0.3 V, Tafel斜率为52 mV·dec−1。 研究结果表明, 具有一定次级结构的二维PtSe2具有作为HER超薄膜催化剂的应用潜力, 为进一步推动其在工业领域的应用提供了理论指导.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lui CH, Li ZQ, Mak KF, Cappelluti E, Heinz TF. Observation of an electrically tunable band gap in trilayer graphene. Nat Phys. 2011;7(12):944.

    Article  CAS  Google Scholar 

  2. Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee SK, Colombo L. Electronics based on two-dimensional materials. Nat Nanotechnol. 2014;9(10):768.

    Article  CAS  Google Scholar 

  3. Chen L, Xue F, Li X, Huang X, Wang L, Kou J, Wang ZL. Strain-gated field effect transistor of a MoS2-ZnO 2D–1D hybrid structure. ACS Nano. 2016;10(1):1546.

    Article  CAS  Google Scholar 

  4. Jiang W, Wang X, Chen Y, Wu G, Ba K, Xuan N, Sun Y, Gong P, Bao X, Shen H, Lin T, Meng XJ, Wang J, Sun Z. Large-area high quality PtSe2 thin film with versatile polarity. InfoMat. 2019;1(2):260.

    CAS  Google Scholar 

  5. Pi L, Li L, Liu K, Zhang Q, Li H, Zhai T. Recent progress on 2D noble-transition-metal dichalcogenides. Adv Funct Mater. 2019;29(51):1904932.

    Article  CAS  Google Scholar 

  6. Wang FK, Zhai TY. Towards scalable van der Waals heterostructure arrays. Rare Met. 2020;39(4):327.

    Article  Google Scholar 

  7. Yu X, Yu P, Wu D, Singh B, Zeng Q, Lin H, Zhou W, Lin J, Suenaga K, Liu Z, Wang QJ. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat Commun. 2018;9:1545.

    Article  Google Scholar 

  8. Zhao Y, Qiao J, Yu Z, Yu P, Xu K, Lau SP, Zhou W, Liu Z, Wang X, Ji W, Chai Y. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv Mater. 2017;29(5):1604230.

    Article  Google Scholar 

  9. Kandemir A, Akbali B, Kahraman Z, Badalov SV, Ozcan M, Iyikanat F, Sahin H. Structural, electronic and phononic properties of PtSe2: from monolayer to bulk, Semiconductor Science and Technology. Semicond Sci Technol. 2018; 33 (8): 085002.

  10. Wang Y, Li L, Yao W, Song S, Sun JT, Pan J, Ren X, Li C, Okunishi E, Wang YQ, Wang E, Shao Y, Zhang YY, Yang HT, Schwier EF, Iwasawa H, Shimada K, Taniguchi M, Cheng Z, Zhou S, Du S, Pennycook SJ, Pantelides ST, Gao HJ. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 2015;15(6):4013.

    Article  CAS  Google Scholar 

  11. Yan M, Wang E, Zhou X, Zhang G, Zhang H, Zhang K, Yao W, Lu N, Yang S, Wu S, Yoshikawa T, Miyamoto K, Okuda T, Wu Y, Yu P, Duan W, Zhou S. High quality atomically thin PtSe2 films grown by molecular beam epitaxy. 2D Mater. 2017; 4 (4): 045015.

  12. Chia X, Adriano A, Lazar P, Sofer Z, Luxa J, Pumera M. Layered platinum dichalcogenides (PtS2, PtSe2 and PtTe2) electrocatalysis: monotonic dependence on the chalcogen size. Adv Funct Mater. 2016;26(24):4306.

    Article  CAS  Google Scholar 

  13. Hu D, Zhao T, ** X, Zheng H, **ng L, Liu X, Zheng J, Sun L, Gu L, Tao C, Wang D, Jiao L. Unveiling the layer-dependent catalytic activity of PtSe2 atomic crystals for the hydrogen evolution reaction. Angew Chem Int Ed. 2019;58(21):6977.

    Article  CAS  Google Scholar 

  14. Shi J, Huan Y, Hong M, Xu R, Yang P, Zhang Z, Zou X, Zhang Y. Chemical vapor deposition grown large-scale atomically thin platinum diselenide with semimetal-semiconductor transition. ACS Nano. 2019;13(7):8442.

    Article  CAS  Google Scholar 

  15. Xu H, Zhang H, Liu Y, Zhang S, Sun Y, Guo Z, Sheng Y, Wang X, Luo C, Wu X, Wang J, Hu W, Xu Z, Sun Q, Zhou P, Shi J, Sun Z, Zhang DW, Bao W. Controlled do** of wafer-scale PtSe2 films for device application. Adv Funct Mater. 2019;29(4):1805614.

    Article  Google Scholar 

  16. Zhou J, Lin J, Huang X, Zhou Y, Chen Y, **a J, Wang H, **e Y, Yu H, Lei J, Wu D, Liu F, Fu Q, Zeng Q, Hsu CH, Yang C, Lu L, Yu T, Shen Z, Lin H, Yakobson BI, Liu Q, Suenaga K, Liu G, Liu Z. A library of atomically thin metal chalcogenides. Nature. 2018;556(7701):335.

    Article  Google Scholar 

  17. O’Brien M, McEvoy N, Motta C, Zheng JY, Berner NC, Kotakoski J, Elibol K, Pennycook TJ, Meyer JC, Yim C, Abid M, Hallam T, Donegan JF, Sanvito S, Duesberg GS. Raman characterization of platinum diselenide thin films. 2D Mater. 2016; 3 (2): 021004.

  18. Shawkat MS, Chung HS, Dev D, Das S, Roy T, Jung Y. Two-dimensional/three-dimensional schottky junction photovoltaic devices realized by the direct CVD growth of vdW 2D PtSe2 layers on silicon. ACS Appl Mater Interfaces. 2019;11(30):27251.

    Article  CAS  Google Scholar 

  19. Yim C, Lee K, McEvoy N, O’Brien M, Riazimehr S, Berner NC, Cullen CP, Kotakoski J, Meyer JC, Lemme MC, Duesberg GS. High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature. ACS Nano. 2016;10(10):9550.

    Article  CAS  Google Scholar 

  20. Jakhar A, Kumar P, Moudgil A, Dhyani V, Das S. Optically pumped broadband terahertz modulator based on nanostructured PtSe2 thin films. Adv Opt Mater. 2020;8(7):1901714.

    Article  CAS  Google Scholar 

  21. Wang L, Zhang S, McEvoy N, Sun YY, Huang J, **e Y, Dong N, Zhang X, Kislyakov IM, Nunzi JM, Zhang L, Wang J. Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2. Laser Photonics Rev. 2019;13(8):1900052.

    Article  Google Scholar 

  22. **e C, Zeng L, Zhang Z, Tsang YH, Luo L, Lee JH. High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate. Nanoscale. 2018;10(32):15285.

    Article  CAS  Google Scholar 

  23. Ansari L, Monaghan S, McEvoy N, Coileáin CÓ, Cullen CP, Lin J, Siris R, Stimpel-Lindner T, Burke KF, Mirabelli G, Duffy R, Caruso E, Nagle RE, Duesberg GS, Hurley PK, Gity F. Quantum confinement-induced semimetal-to-semiconductor evolution in large-area ultra-thin PtSe2 films grown at 400°C. npj 2D Mater. Appl. 2019; 3 (1): 33.

  24. Wagner S, Yim C, McEvoy N, Kataria S, Yokaribas V, Kuc A, Pindl S, Fritzen CP, Heine T, Duesberg GS, Lemme MC. Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films. Nano Lett. 2018;18(6):3738.

    Article  CAS  Google Scholar 

  25. Wu Y, Qiao P, Chong T, Shen Z. Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Adv Mater. 2002;14(1):64.

    Article  CAS  Google Scholar 

  26. Chen H, Song T, Tang L, Pu X, Li Z, Xu Q, Liu H, Wang Y, **a Y. In-situ growth of vertically aligned MoS2 nanowalls on reduced graphene oxide enables a large capacity and highly stable anode for sodium ion storage. J Power Sources. 2020;445:227271.

    Article  CAS  Google Scholar 

  27. Zhang Q, Wang W, Zhang J, Zhu X, Zhang Q, Zhang Y, Ren Z, Song S, Wang J, Ying Z, Wang R, Qiu X, Peng T, Fu L. Highly efficient photocatalytic hydrogen evolution by ReS2 via a two-electron catalytic reaction. Adv Mater. 2018;30(23):1707123.

    Article  Google Scholar 

  28. Jiang Y, Yang M, Qu M, Wang Y, Yang Z, Feng Q, Deng X, Shen W, Li M, He R. In situ confinement of Pt within three-dimensional MoO2@porous carbon for efficient hydrogen evolution. J Mater Chem A. 2020;8(20):10409.

    Article  CAS  Google Scholar 

  29. Feng QL, Li M, Wang TX, Chen YP, Wang XJ, Zhang XD, Li XB, Yang ZCY, Feng LP, Zheng JB, Xu H, Zhai TY, Jiang YM. Low-temperature growth of three dimensional ReS2/ReO2 metal-semiconductor heterojunctions on graphene/polyimide film for enhanced hydrogen evolution reaction. Appl Catal B Environ. 2020;271:118924.

    Article  CAS  Google Scholar 

  30. ** X, Liang D, Wu Y, Yan X, Zhou S, Hu D, Pan X, Lu P, Jiao L. Activating a two-dimensional PtSe2 basal plane for the hydrogen evolution reaction through the simultaneous generation of atomic vacancies and Pt clusters. Nano Lett. 2021;21(9):3857.

    Article  CAS  Google Scholar 

  31. Lin S, Liu Y, Hu Z, Lu W, Mak CH, Zeng L, Zhao J, Li Y, Yan F, Tsang YH, Zhang X, Lau SP. Tunable active edge sites in PtSe2 films towards hydrogen evolution reaction. Nano Energy. 2017;42:26.

    Article  CAS  Google Scholar 

  32. Yu Y, Nam GH, He Q, Wu XJ, Zhang K, Yang Z, Chen J, Ma Q, Zhao M, Liu Z, Ran FR, Wang X, Li H, Huang X, Li B, **ong Q, Zhang Q, Liu Z, Gu L, Du Y, Huang W, Zhang H. High phase-purity 1T’-MoS2- and 1T'-MoSe2-layered crystals. Nat Chem. 2018;10(6):638.

    Article  CAS  Google Scholar 

  33. You H, Zhuo Z, Lu X, Liu Y, Guo Y, Wang W, Yang H, Wu X, Li H, Zhai T. 1T′-MoTe2-based on-chip electrocatalytic microdevice: a platform to unravel oxidation-dependent electrocatalysis. CCS Chem. 2019;1(5):396.

    Article  CAS  Google Scholar 

  34. Jiang Z, Zhou W, Hong A, Guo M, Luo X, Yuan C. MoS2 moiré superlattice for hydrogen evolution reaction. ACS Energy Lett. 2019;4(12):2830.

    Article  CAS  Google Scholar 

  35. Liu L, Wu J, Wu L, Ye M, Liu X, Wang Q, Hou S, Lu P, Sun L, Zheng J, **ng L, Gu L, Jiang X, **e L, Jiao L. Phase-selective synthesis of 1T' MoS2 monolayers and heterophase bilayers. Nat Mater. 2018;17(12):1108.

    Article  CAS  Google Scholar 

  36. Zhou Y, Silva JL, Woods JM, Pondick JV, Feng Q, Liang Z, Liu W, Lin L, Deng B, Brena B, **a F, Peng H, Liu Z, Wang H, Araujo CM, Cha JJ. Revealing the contribution of individual factors to hydrogen evolution reaction catalytic activity. Adv Mater. 2018;30(18):1706076.

    Article  Google Scholar 

  37. Yan M, Pan X, Wang P, Chen F, He L, Jiang G, Wang J, Liu JZ, Xu X, Liao X, Yang J, Mai L. Field-effect tuned adsorption dynamics of VSe2 nanosheets for enhanced hydrogen evolution reaction. Nano Lett. 2017;17(7):4109.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No.51802266), Shaanxi’s Key Project of Research and Development Plan (No.2021GY-217), the Research Funds for Interdisciplinary Subject of NWPU (No.19SH0304), and the Fundamental Research Funds for the Central Universities (No.3102017jc01001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Liang Feng or Kan-She Li.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 24200 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, R., Feng, QL., Wang, XJ. et al. Morphology-controlled growth of large-area PtSe2 films for enhanced hydrogen evolution reaction. Rare Met. 41, 1314–1322 (2022). https://doi.org/10.1007/s12598-021-01877-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01877-z

Keywords

Navigation