Log in

Recent progress and strategies of cathodes toward polysulfides shuttle restriction for lithium-sulfur batteries

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Lithium-sulfur batteries (LSBs) have already developed into one of the most promising new-generation high-energy density electrochemical energy storage systems with outstanding features including high-energy density, low cost, and environmental friendliness. However, the development and commercialization path of LSBs still presents significant limitations and challenges, particularly the notorious shuttle effect triggered by soluble long-chain lithium polysulfides (LiPSs), which inevitably leads to low utilization of cathode active sulfur and high battery capacity degradation, short cycle life, etc. Substantial research efforts have been conducted to develop various sulfur host materials capable of effectively restricting the shuttle effect. This review firstly introduces the fundamental electrochemical aspects of LSBs, followed by a comprehensive analysis of the mechanism underlying the shuttle effect in Li–S batteries and its profound influence on various battery components as well as the overall battery performance. Subsequently, recent advances and strategies are systematically reviewed, including physical confinement, chemisorption, and catalytic conversion of sulfur hosts for restricting LiPSs shuttle effects. The interplay mechanisms of sulfur hosts and LiPSs are discussed in detail and the structural advantages of different host materials are highlighted. Furthermore, key insights for the rational design of advanced host materials for LSBs are provided, and the upcoming challenges and the prospects for sulfur host materials in lithium-sulfur batteries are also explored.

Graphical abstract

摘要

锂硫电池(LSBs)由于具有高能量密度、低成本和环境友好等突出特点已发展成为最有前途的新一代高能量密度电化学储能系统之一。然而,LSBs 的发展和商业化道路仍然面临着巨大的限制和挑战,尤其是可溶性长链多硫化锂(LiPSs)引发的穿梭效应,不可避免地导致**极活性硫利用率低、电池容量衰减大、循环寿命短等问题。为了开发能够有效限制穿梭效应的各种硫主材料,研究人员进行了大量的研究工作。本综述首先介绍了 LSBs 的基本电化学方面,然后全面分析了锂-硫电池中穿梭效应的机制及其对各种电池组件和电池整体性能的深远影响。随后,系统回顾了相关最**的研究进展和策略,包括物理限制,化学吸附,和硫宿主的催化转化限制LiPSs穿梭效应。详细讨论了硫和LiPSs的相互作用机理,**调了不同宿主材料的结构优势。此外,还为合理设计先进的锂-硫电池**极宿主材料提供了关键见解,并探讨了锂硫电池中硫主体材料即将面临的挑战和前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Source: Web of Science Core Collection, with search results: (“lithium sulfur batteries” or “Li–S batteries” or “LSBs”) and (“Shuttle effect” or “polysulfide shuttling” or “shuttle”), retrieved June 26, 2023)

Fig. 2
Fig. 3

Reproduced with permission from Ref. [35]. Copyright 2020, Wiley–VCH. b Polysulfide shuttle effect in lithium-sulfur batteries. Reproduced with permission from Ref. [36]. Copyright 2015, Royal Society of Chemistry

Fig. 4

Reproduced with permission from Ref. [74]. Copyright 2012, Wiley–VCH. b Schematic illustration of AGNs@S composites confining polysulfides and undergoing electrochemical reactions. Reproduced with permission from Ref. [75]. Copyright 2013, Royal Society of Chemistry. c Synthesis of F-GS@S sandwich composites. Reproduced with permission from Ref. [76]. Copyright 2020, IOP Publishing Ltd. d Graphite chemically modified to graphene, where CMG is chemically modified graphite, EG is edge-cleaved graphite. Reproduced with permission from Ref. [81]. Copyright 2016, Wiley–VCH

Fig. 6

Reproduced with permission from Ref. [86]. Copyright 2017, Wiley–VCH. c Calculated binding energy of Li2S with various functional groups (R) in context of vinyl polymers -(CH2-CHR)n-; d ab initio simulations investigating Li2S binding configurations and energies with various R groups in vinyl polymers and Li–O interaction between Li2S and >C=O groups. Reproduced with permission from Ref. [93]. Copyright 2013, Royal Society of Chemistry

Fig. 7

Reproduced with permission from Ref. [94]. Copyright 2013, Royal Society of Chemistry. c Voltage profiles of DIXPS and DIXDS during cycling at 0.1C (1C = 672 mA·g−1 for DIXPS; 1C = 198 mA·g−1 for DIXDS); d cyclic voltammograms (CV) of the initial cycle for DIXPS and DIXDS at a scanning rate of 0.05 mV·s−1. Reproduced with permission from Ref. [100]. Copyright 2020, Wiley–VCH. e Synthesis process of phenyl polysulfide. Reproduced with permission from Ref. [101]. Copyright 2018, American Chemical Society. f Synthesis process and proposed chemical structure of STI. Reproduced with permission from Ref. [117]. Copyright 2019, Elsevier. d Preparation of TCD-TCS and TCD-TCS/S and evolution of active materials during discharge process for e conventional C/S cathodes and f TC-100/S cathodes; g XPS spectra of discharge products for TC-100 at DoD of 72% and 100%; h charge–discharge voltage curves of TC-60/S, TC-80/S, and TC-100/S electrodes at an areal loading of 1.8 mg·cm−2. Reproduced with permission from Ref. [129]. Copyright 2021, MDPI

Fig. 10

Reproduced with permission from Ref. [142]. Copyright 2019, American Chemical Society. g Spatial charge density of SATi and Li2S, illustrating distinctive d-orbital and p-orbital distribution pattern, highlighting d-p orbital hybridization scenario between SAC and Li2S; h SAC-S and Li–S bond strengths in (Li2S)8-SAC adsorption system assessed by integrated-COHP (–ICOHP) and (inset) adsorption structure; i energy barrier for delithiation during oxidation process of (Li2S)8. Reproduced with permission from Ref. [147]. Copyright 2021, Wiley–VCH

Fig. 11

Reproduced with permission from Ref. [158]. Copyright 2020, Wiley–VCH. f Free energy change of Li2S nucleation; current response during PITT testing at constant potentials of g 2.0 V during discharge and h 2.4 V during charge; i schematic illustration of a unidirectional catalyst with a single type of defect (DN or VSe), and a bidirectional catalyst combining both DN and VSe; j operando Raman spectra of S@N-MoSe2-x/C electrode electrolyte during the initial cycle at a scan rate of 0.2 mV·s−1. Reproduced with permission from Ref. [161]. Copyright 2020, Wiley–VCH

Fig. 12

Reproduced with permission from Ref. [163]. Copyright 2021, Wiley–VCH. e Proposed redox reaction pathways for LSBs based on sulfur-vacancy heterojunction materials; f excessive adsorption of liquid-phase LiPSs on traditional Co9S8/MoS2 heterostructure (orange-yellow liquid spheres of Co9S8); g coordination of chemisorption and catalytic conversion achieved by introducing sulfur vacancies in Co9S8/MoS2 heterostructure; h CV curves of CMG-H at various sweep rates within voltage range of 1.6–2.8 V. Reproduced with permission from Ref. [165]. Copyright 2022, Royal Society of Chemistry

Similar content being viewed by others

References

  1. Maleki KSH, Li XF. Controllable cathode-electrolyte interface of Li[Ni0.8Co0.1Mn0.1]O2 for lithium ion batteries: a review. Adv Energy Mater. 2019;9(39):1901597. https://doi.org/10.1002/aenm.201901597.

    Article  CAS  Google Scholar 

  2. Chen M, Zhang SC, Zou ZG, Zhong SL, Ling WQ, Geng J, Liang FA, Peng XX, Gao Y, Yu FG. Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries. Rare Met. 2023;42:2868. https://doi.org/10.1007/s12598-023-02303-2.

  3. Hong XD, Mei J, Wen L, Tong YY, Vasileff AJ, Wang LQ, Liang J, Sun ZQ, Dou SX. Nonlithium metal-sulfur batteries: steps toward a leap. Adv Mater. 2019;31(5):1802822. https://doi.org/10.1002/adma.201802822.

    Article  CAS  Google Scholar 

  4. Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater. 2016;1(4):16013. https://doi.org/10.1038/natrevmats.2016.13.

    Article  CAS  Google Scholar 

  5. Zhao DC, Ge-Zhang SJ, Zhang Z, Tang H, Xu YY, Gao F, Xu XY, Liu SP, Zhou J, Wang ZL, Wu YT, Liu X, Zhang Y. Three-dimensional honeycomb-like carbon as sulfur host for sodium-sulfur batteries without the shuttle Effect. ACS Appl Mater Interfaces. 2022;14(49):54662. https://doi.org/10.1021/acsami.2c13862.

    Article  CAS  PubMed  Google Scholar 

  6. Ren JH, Wang ZY, Xu P, Wang C, Gao F, Zhao DC, Liu SP, Yang H, Wang D, Niu CM, Zhu YS, Wu YT, Liu X, Wang ZL, Zhang Y. Porous Co2VO4 nanodisk as a high-energy and fast-charging anode for lithium-Ion batteries. Nano-Micro Lett. 2021;14(1):5. https://doi.org/10.1007/s40820-021-00758-5.

    Article  CAS  Google Scholar 

  7. Chen JX, Su ZL, Zhao T, Ganggang Pu, Li A, Wang L. Performance of cathode material of high-power lithium-ion battery. Chin J Rare Met. 2023;47(12):1756. https://doi.org/10.13373/j.cnki.cjrm.XY21010027

  8. Manthiram A, Chung SH, Zu CX. Lithium-sulfur batteries: progress and prospects. Adv Mater. 2015;27(12):1980. https://doi.org/10.1002/adma.201405115.

    Article  CAS  PubMed  Google Scholar 

  9. Wang DW, Zeng QC, Zhou GM, Yin LC, Li F, Cheng HM, Gentle LR, Lu GQM. Carbon-sulfur composites for Li-S batteries: status and prospects. J Mater Chem A. 2013;1(33):9382. https://doi.org/10.1039/C3TA11045A.

    Article  CAS  Google Scholar 

  10. Zhou YL, Cheng WN, Bai YZ, Hou C, Li K, Huang YA. Rise of flexible high-temperature electronics. Rare Met. 2023;42(6):1773. https://doi.org/10.1007/s12598-023-02298-w.

    Article  CAS  Google Scholar 

  11. Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater. 2009;8(6):500. https://doi.org/10.1038/nmat2460.

    Article  CAS  PubMed  Google Scholar 

  12. Akridge JR, Mikhaylik YV, White N. Li/S fundamental chemistry and application to high-performance rechargeable batteries. Solid State Ion. 2004;175(1):243. https://doi.org/10.1016/j.ssi.2004.07.070.

    Article  CAS  Google Scholar 

  13. Shim J, Striebel KA, Cairns EJ. The Lithium/sulfur rechargeable cell: effects of electrode composition and solvent on cell performance. J Electrochem Soc. 2002;149(10):A1321. https://doi.org/10.1149/1.1503076.

    Article  CAS  Google Scholar 

  14. Liang CD, Dudney NJ, Howe JY. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem Mat. 2009;21(19):4724. https://doi.org/10.1021/cm902050j.

    Article  CAS  Google Scholar 

  15. Chen L, Yu H, Li WX, Dirican M, Liu Y, Zhang XW. Interlayer design based on carbon materials for lithium-sulfur batteries: a review. J Mater Chem A. 2020;8(21):10709. https://doi.org/10.1039/D0TA03028G.

    Article  CAS  Google Scholar 

  16. Zhao DC, Jiang S, Yu S, Ren JH, Zhang Z, Liu SP, Liu X, Wang ZL, Wu YT, Zhang Y. Lychee seed-derived microporous carbon for high-performance sodium-sulfur batteries. Carbon. 2023;201:864. https://doi.org/10.1016/j.carbon.2022.09.075.

    Article  CAS  Google Scholar 

  17. Dörfler S, Althues H, Härtel P, Abendroth T, Schumm B, Kaskel S. Challenges and key parameters of lithium-sulfur batteries on pouch cell Level. Joule. 2020;4(3):539. https://doi.org/10.1016/j.joule.2020.02.006.

    Article  CAS  Google Scholar 

  18. Gao F, Yue XA, Xu XY, Xu P, Zhang F, Fan HS, Wang ZL, Wu YT, Liu X, Zhang Y. A N/Co co-doped three-dimensional porous carbon as cathode host for advanced lithium-selenium batteries. Rare Met. 2023;42(8):2670. https://doi.org/10.1007/s12598-023-02273-5.

    Article  CAS  Google Scholar 

  19. Huang YZ, Lin L, Zhang CK, Liu L, Li YK, Qiao ZS, Lin J, Wei QL, Wang LS, **e QS, Peng DL. Recent advances and strategies toward polysulfides shuttle Inhibition for high-performance Li-S batteries. Adv Sci. 2022;9(12):2106004. https://doi.org/10.1002/advs.202106004.

    Article  CAS  Google Scholar 

  20. Qi FL, Sun ZH, Fan XL, Wang ZX, Shi Y, Hu GJ, Li F. Tunable Interaction between metal-organic frameworks and electroactive components in lithium-sulfur batteries: status and perspectives. Adv Energy Mater. 2021;11(20):2100387. https://doi.org/10.1002/aenm.202100387.

    Article  CAS  Google Scholar 

  21. Kwon SC, Song HJ, Çakmakçı N, Jeong Y. A practical approach to design sulfur host material for lithium-sulfur batteries based on electrical conductivity and pore structure. Mater Today Commun. 2021;27:102309. https://doi.org/10.1016/j.mtcomm.2021.102309.

    Article  CAS  Google Scholar 

  22. ** K, He DQ, Harris C, Wang YK, Lai C, Li HL, Coxon PR, Ding SJ, Wang C, Kumar RV. Enhanced sulfur transformation by multifunctional FeS2/FeS/S composites for high-volumetric capacity cathodes in lithium-sulfur batteries. Adv Sci. 2019;6(6):1800815. https://doi.org/10.1002/advs.201800815.

    Article  CAS  Google Scholar 

  23. Li F, Liu QH, Hu JW, Feng YZ, He PB, Ma JM. Recent advances in cathode materials for rechargeable lithium-sulfur batteries. Nanoscale. 2019;11(33):15418. https://doi.org/10.1039/C9NR04415A.

    Article  CAS  PubMed  Google Scholar 

  24. Shen XW, Qian T, Chen PP, Liu J, Wang MF, Yan CL. Bioinspired polysulfiphobic artificial Interphase layer on lithium metal anodes for lithium sulfur batteries. ACS Appl Mater Interfaces. 2018;10(36):30058. https://doi.org/10.1021/acsami.8b12093.

    Article  CAS  PubMed  Google Scholar 

  25. Qiao X, Wang CZ, Zang J, Guo BF, Zheng Y, Zhang RR, Cui JQ, Fang XL. Conductive inks composed of multicomponent carbon nanomaterials and hydrophilic polymer binders for high-energy-density lithium-sulfur batteries. Energy Storage Mater. 2022;49:236. https://doi.org/10.1016/j.ensm.2022.04.022.

    Article  Google Scholar 

  26. Sun RM, Hu J, Shi XX, Wang J, Zheng XY, Zhang YX, Han B, **a KS, Gao Q, Zhou CG, Mai LQ. Water-soluble cross-linking functional binder for low-cost and high-performance lithium-sulfur batteries. Adv Funct Mater. 2021;31(42):2104858. https://doi.org/10.1002/adfm.202104858.

    Article  CAS  Google Scholar 

  27. Zhang SS. Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources. 2013;231:153. https://doi.org/10.1016/j.jpowsour.2012.12.102.

    Article  CAS  Google Scholar 

  28. Jeong YC, Kim JH, Nam S, Park CR, Yang SJ. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries. Adv Funct Mater. 2018;28(38):1707411. https://doi.org/10.1002/adfm.201707411.

    Article  CAS  Google Scholar 

  29. Li YJ, Gao TT, Ni DY, Zhou Y, Yousaf M, Guo ZQ, Zhou JH, Zhou P, Wang Q, Guo SJ. Two birds with one stone: interfacial engineering of multifunctional janus separator for lithium-sulfur batteries. Adv Mater. 2022;34(5):2107638. https://doi.org/10.1002/adma.202107638.

    Article  CAS  Google Scholar 

  30. Chen W, Lei TY, Wu CY, Deng M, Gong CH, Hu K, Ma YC, Dai LP, Lv WQ, He WD, Liu XJ, **ong J, Yan CL. Designing safe electrolyte systems for a high-stability lithium-sulfur Battery. Adv Energy Mater. 2018;8(10):1702348. https://doi.org/10.1002/aenm.201702348.

    Article  CAS  Google Scholar 

  31. Pang Q, Shyamsunder A, Narayanan B, Kwok CY, Curtiss LA, Nazar LF. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries. Nat Energy. 2018;3(9):783. https://doi.org/10.1038/s41560-018-0214-0.

    Article  CAS  Google Scholar 

  32. Haruna AB, Mofokeng TP, Ogada JJ, Zoubir O, Lallaoui A, Cherkaoui El Moursli F, Edfouf Z, Ozoemena KI. Recent advances in the cathode materials and solid-state electrolytes for lithium sulfur batteries. Electrochem Commun. 2022;136:107248. https://doi.org/10.1016/j.elecom.2022.107248.

    Article  CAS  Google Scholar 

  33. Zheng J, Ji GB, Fan XL, Chen J, Li Q, Wang HY, Yang Y, Demella KC, Raghavan SR, Wang CS. High-fluorinated electrolytes for Li-S batteries. Adv Energy Mater. 2019;9(16):1803774. https://doi.org/10.1002/aenm.201803774.

    Article  CAS  Google Scholar 

  34. Liu J, Qian T, Xu N, Wang MF, Zhou JQ, Shen XW, Yan CL. Dendrite-free and ultra-high energy lithium sulfur battery enabled by dimethyl polysulfide intermediates. Energy Storage Mater. 2020;24:265. https://doi.org/10.1016/j.ensm.2019.08.010.

    Article  Google Scholar 

  35. Zhou L, Danilov DL, Eichel R-A, Notten PHL. Host materials anchoring polysulfides in Li-S batteries reviewed. Adv Energy Mater. 2021;11(15):2001304. https://doi.org/10.1002/aenm.202001304.

    Article  CAS  Google Scholar 

  36. Wild M, O’neill L, Zhang T, Purkayastha R, Minton G, Marinescu M, Offer GJ. Lithium sulfur batteries, a mechanistic review. Energy Environ Sci. 2015;8(12):3477. https://doi.org/10.1039/C5EE01388G.

    Article  CAS  Google Scholar 

  37. Deng C, Wang ZW, Wang SP, Yu JX. Inhibition of polysulfide diffusion in lithium-sulfur batteries: mechanism and improvement strategies. J Mater Chem A. 2019;7(20):12381. https://doi.org/10.1039/C9TA00535H.

    Article  CAS  Google Scholar 

  38. Peng LL, Wei ZY, Wan CZ, Li J, Chen Z, Zhu D, Baumann D, Liu H, Allen CS, Xu X, Kirkland AI, Shakir I, Almutairi Z, Tolbert S, Dunn B, Huang Y, Sautet P, Duan XF. A fundamental look at electrocatalytic sulfur reduction reaction. Nat Catal. 2020;3(9):762. https://doi.org/10.1038/s41929-020-0498-x.

    Article  CAS  Google Scholar 

  39. Rehman S, Khan K, Zhao YF, Hou YL. Nanostructured cathode materials for lithium-sulfur batteries: progress, challenges and perspectives. J Mater Chem A. 2017;5(7):3014. https://doi.org/10.1039/C6TA10111A.

    Article  CAS  Google Scholar 

  40. Yuan H, Peng HJ, Huang JQ, Zhang Q. Sulfur redox reactions at working interfaces in lithium-sulfur batteries: a perspective. Adv Mater Interfaces. 2019;6(4):1802046. https://doi.org/10.1002/admi.201802046.

    Article  CAS  Google Scholar 

  41. Ogoke O, Wu G, Wang XL, Casimir A, Ma L, Wu TP, Lu J. Effective strategies for stabilizing sulfur for advanced lithium-sulfur batteries. J Mater Chem A. 2017;5(2):448. https://doi.org/10.1039/C6TA07864H.

    Article  CAS  Google Scholar 

  42. Fan FY, Carter WC, Chiang YM. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv Mater. 2015;27(35):5203. https://doi.org/10.1002/adma.201501559.

    Article  CAS  PubMed  Google Scholar 

  43. Yang Y, Zheng GY, Misra S, Nelson J, Toney MF, Cui Y. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J Am Chem Soc. 2012;134(37):15387. https://doi.org/10.1021/ja3052206.

    Article  CAS  PubMed  Google Scholar 

  44. Gao J, Lowe MA, Kiya Y, Abruña HD. Effects of liquid electrolytes on the Charge-discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. J Phys Chem C. 2011;115(50):25132. https://doi.org/10.1021/jp207714c.

    Article  CAS  Google Scholar 

  45. Zhou CG, Ji Z, Han B, Li QY, Gao Q, **a KS, Wu JP. Computational criteria for evaluating polysulfide cohesion, solvation, and stabilization: approach for screening effective anchoring substrates. J Phys Chem C. 2017;121(1):308. https://doi.org/10.1021/acs.jpcc.6b09577.

    Article  CAS  Google Scholar 

  46. Hagen M, Schiffels P, Hammer M, Dörfler S, Tübke J, Hoffmann MJ, Althues H, Kaskel S. In-situ raman investigation of polysulfide formation in Li-S cells. J Electrochem Soc. 2013;160(8):A1205. https://doi.org/10.1149/2.045308jes.

    Article  CAS  Google Scholar 

  47. Eftekhari A, Kim DW. Cathode materials for lithium-sulfur batteries: a practical perspective. J Mater Chem A. 2017;5(34):17734. https://doi.org/10.1039/C7TA00799J.

    Article  CAS  Google Scholar 

  48. Ren J, Zhou YB, **a L, Zheng QJ, Liao J, Long EY, **e FY, Xu CG, Lin DM. Rational design of a multidimensional N-doped porous carbon/MoS2/CNT nano-architecture hybrid for high performance lithium-sulfur batteries. J Mater Chem A. 2018;6(28):13835. https://doi.org/10.1039/C8TA04675A.

    Article  CAS  Google Scholar 

  49. Li Z, Huang YM, Yuan LX, Hao ZX, Huang YH. Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries. Carbon. 2015;92:41. https://doi.org/10.1016/j.carbon.2015.03.008.

    Article  CAS  Google Scholar 

  50. Chen CG, Li DJ, Gao L, Harks PPRML, Eichel R-A, Notten PHL. Carbon-coated core-shell nanocomposites as high performance cathode materials for lithium-sulfur batteries. J Mater Chem A. 2017;5(4):1428. https://doi.org/10.1039/C6TA09146F.

    Article  CAS  Google Scholar 

  51. Zhou GM, Wang DW, Li F, Hou PX, Yin LC, Liu C, Lu GQ, Gentle IR, Cheng HM. A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries. Energy Environ Sci. 2012;5(10):8901. https://doi.org/10.1039/C2EE22294A.

    Article  CAS  Google Scholar 

  52. Wang HL, Yang Y, Liang YY, Robinson JT, Li YG, Jackson A, Cui Y, Dai HJ. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011;11(7):2644. https://doi.org/10.1021/nl200658a.

    Article  CAS  PubMed  Google Scholar 

  53. Dai CL, Sun GQ, Hu LY, **ao YK, Zhang ZP, Qu LT. Recent progress in graphene-based electrodes for flexible batteries. InfoMat. 2020;2(3):509. https://doi.org/10.1002/inf2.12039.

    Article  CAS  Google Scholar 

  54. Zhou GM, Zhao YB, Manthiram A. Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li-S batteries. Adv Energy Mater. 2015;5(9):1402263. https://doi.org/10.1002/aenm.201402263.

    Article  CAS  Google Scholar 

  55. Ji LW, Rao MM, Aloni S, Wang L, Cairns EJ, Zhang YG. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy Environ Sci. 2011;4(12):5053. https://doi.org/10.1039/C1EE02256C.

    Article  CAS  Google Scholar 

  56. Shi YY, Liu GJ, ** RC, Xu H, Wang QY, Gao SM. Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: a review. Carbon Energy. 2019;1(2):253. https://doi.org/10.1002/cey2.19.

    Article  CAS  Google Scholar 

  57. Liu MQ, Wu F, Zheng LM, Feng X, Li Y, Li Y, Bai Y, Wu C. Nature-inspired porous multichannel carbon monolith: molecular cooperative enables sustainable production and high-performance capacitive energy storage. InfoMat. 2021;3(10):1154. https://doi.org/10.1002/inf2.12231.

    Article  CAS  Google Scholar 

  58. Li Z, Wu HB, Lou XW. Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries. Energy Environ Sci. 2016;9(10):3061. https://doi.org/10.1039/C6EE02364A.

    Article  CAS  Google Scholar 

  59. **n S, Gu L, Zhao NH, Yin YX, Zhou LJ, Guo YG, Wan LJ. Smaller sulfur molecules promise better lithium-sulfur batteries. J Am Chem Soc. 2012;134(45):18510. https://doi.org/10.1021/ja308170k.

    Article  CAS  PubMed  Google Scholar 

  60. Li Z, Yuan LX, Yi ZQ, Sun YM, Liu Y, Jiang Y, Shen Y, **n Y, Zhang ZL, Huang YH. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv Energy Mater. 2014;4(7):1301473. https://doi.org/10.1002/aenm.201301473.

    Article  CAS  Google Scholar 

  61. Li ZL, **ao ZB, Wang SQ, Cheng ZB, Li PY, Wang RH. Engineered interfusion of hollow nitrogen-doped carbon nanospheres for Improving electrochemical behavior and energy density of lithium-sulfur batteries. Adv Funct Mater. 2019;29(31):1902322. https://doi.org/10.1002/adfm.201902322.

    Article  CAS  Google Scholar 

  62. Yu ZS, Liu ML, Guo DY, Wang JH, Chen X, Li J, ** HL, Yang Z, Chen XA, Wang S. Radially inwardly aligned hierarchical porous carbon for ultra-long-life lithium-sulfur batteries. Angew Chem-Int Edit. 2020;59(16):6406. https://doi.org/10.1002/anie.201914972.

    Article  CAS  Google Scholar 

  63. Zhang LM, Zhao WQ, Yuan SH, Jiang F, Chen XQ, Yang Y, Ge P, Sun W, Ji XB. Engineering the morphology/porosity of oxygen-doped carbon for sulfur host as lithium-sulfur batteries. J Energy Chem. 2021;60:531. https://doi.org/10.1016/j.jechem.2020.12.031.

    Article  CAS  Google Scholar 

  64. Chen MQ, Su Z, Jiang K, Pan YK, Zhang YY, Long DH. Promoting sulfur immobilization by a hierarchical morphology of hollow carbon nanosphere clusters for high-stability Li-S battery. J Mater Chem A. 2019;7(11):6250. https://doi.org/10.1039/C8TA12349G.

    Article  CAS  Google Scholar 

  65. Li BQ, Zhang SY, Kong L, Peng HJ, Zhang Q. Porphyrin organic framework hollow spheres and their applications in lithium-sulfur batteries. Adv Mater. 2018;30(23):1707483. https://doi.org/10.1002/adma.201707483.

    Article  CAS  Google Scholar 

  66. Park J, Yoon S, Oh S, Kim J, Kim D, Kim G, Lee J, Song MJ, Kim I, Sohn K, Kim J. A systematic correlation between morphology of porous carbon cathode and electrolyte in lithium-sulfur battery. J Energy Chem. 2021;61:561. https://doi.org/10.1016/j.jechem.2021.03.036.

    Article  CAS  Google Scholar 

  67. Song Y, Li XY, He CZ. Porous carbon framework nested nickel foam as freestanding host for high energy lithium sulfur batteries. Chin Chem Lett. 2021;32(3):1106. https://doi.org/10.1016/j.cclet.2020.08.024.

    Article  CAS  Google Scholar 

  68. Liu ZB, Wang L, Yang WT. Hierarchically porous nitrogen-doped carbon foams decorated with zinc nanodots as high-performance sulfur hosts for lithium-sulfur battery. Chin Chem Lett. 2021;32(9):2919. https://doi.org/10.1016/j.cclet.2021.02.027.

    Article  CAS  Google Scholar 

  69. Han P, Chung SH, Manthiram A. Pyrrolic-type nitrogen-doped hierarchical macro/mesoporous carbon as a bifunctional host for high-performance thick cathodes for lithium-sulfur batteries. Small. 2019;15(16):1900690. https://doi.org/10.1002/smll.201900690.

    Article  CAS  Google Scholar 

  70. Zhong ME, Guan JD, Sun JC, Guo H, **ao ZB, Zhou N, Gui QW, Gong DX. Carbon nanodot-decorated alveolate N, O, S tridoped hierarchical porous carbon as efficient electrocatalysis of polysulfide conversion for lithium-sulfur batteries. Electrochim Acta. 2019;299:600. https://doi.org/10.1016/j.electacta.2019.01.024.

    Article  CAS  Google Scholar 

  71. Lu RC, Cheng M, Mao LJ, Zhang M, Yuan HX, Amin K, Yang C, Cheng YL, Meng YN, Wei ZX. Nitrogen-doped nanoarray-modified 3D hierarchical graphene as a cofunction host for high-performance flexible Li-S battery. EcoMat. 2020;2(1): e12010. https://doi.org/10.1002/eom2.12010.

    Article  CAS  Google Scholar 

  72. Qin XY, Wu JX, Xu ZL, Chong WG, Huang JQ, Liang GM, Li BH, Kang FY, Kim JK. Electrosprayed multiscale porous carbon microspheres as sulfur hosts for long-life lithium-sulfur batteries. Carbon. 2019;141:16. https://doi.org/10.1016/j.carbon.2018.09.048.

    Article  CAS  Google Scholar 

  73. Zhong Y, **a XH, Deng SJ, **e D, Shen SH, Zhang KL, Guo WH, Wang XL, Tu JP. Spore carbon from aspergillus oryzae for advanced electrochemical energy storage. Adv Mater. 2018;30(46):1805165. https://doi.org/10.1002/adma.201805165.

    Article  CAS  Google Scholar 

  74. Wang B, Li KF, Su DW, Ahn H, Wang GX. Superior electrochemical performance of sulfur/graphene nanocomposite material for high-capacity lithium-sulfur batteries. Chem-Asian J. 2012;7(7):1637. https://doi.org/10.1002/asia.201200004.

    Article  CAS  PubMed  Google Scholar 

  75. Ding B, Yuan CZ, Shen LF, Xu GY, Nie P, Lai QX, Zhang XG. Chemically tailoring the nanostructure of graphene nanosheets to confine sulfur for high-performance lithium-sulfur batteries. J Mater Chem A. 2013;1(4):1096. https://doi.org/10.1039/C2TA00396A.

    Article  CAS  Google Scholar 

  76. Li YP, Guan Q, Cheng JL, Wang B. Ultrafine nanosulfur particles sandwiched in little oxygen-functionalized graphene layers as cathodes for high rate and long-life lithium-sulfur batteries. Nanotechnology. 2020;31(24): 245404. https://doi.org/10.1088/1361-6528/ab7c46.

    Article  CAS  PubMed  Google Scholar 

  77. Lin TQ, Tang YF, Wang YM, Bi H, Liu ZQ, Huang FQ, **e XM, Jiang MH. Scotch-tape-like exfoliation of graphite assisted with elemental sulfur and graphene-sulfur composites for high-performance lithium-sulfur batteries. Energy Environ Sci. 2013;6(4):1283. https://doi.org/10.1039/C3EE24324A.

    Article  CAS  Google Scholar 

  78. Wang XF, Wang ZX, Chen LQ. Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium-sulfur battery. J Power Sources. 2013;242:65. https://doi.org/10.1016/j.jpowsour.2013.05.063.

    Article  CAS  Google Scholar 

  79. Wu F, Li J, Su YF, Wang J, Yang W, Li N, Chen L, Chen S, Chen RJ, Bao LY. Layer-by-layer assembled architecture of polyelectrolyte multilayers and graphene sheets on hollow carbon spheres/sulfur composite for high-performance lithium-sulfur batteries. Nano Lett. 2016;16(9):5488. https://doi.org/10.1021/acs.nanolett.6b01981.

    Article  CAS  PubMed  Google Scholar 

  80. Kim JH, Choi J, Seo J, Kwon J, Paik U. Two-dimensional Nafion nanoweb anion-shield for improved electrochemical performances of lithium-sulfur batteries. J Mater Chem A. 2016;4(29):11203. https://doi.org/10.1039/C6TA04203A.

    Article  CAS  Google Scholar 

  81. ** for lithium-sulfur battery improvement. Adv Mater. 2017;29(6):1604724. https://doi.org/10.1002/adma.201604724.

    Article  CAS  Google Scholar 

  82. Zeng P, Huang LW, Zhang XL, Zhang RX, Wu L, Chen YG. Long-life and high-areal-capacity lithium-sulfur batteries realized by a honeycomb-like N, P dual-doped carbon modified separator. Chem Eng J. 2018;349:327. https://doi.org/10.1016/j.cej.2018.05.096.

    Article  CAS  Google Scholar 

  83. Wang HB, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2012;2(5):781. https://doi.org/10.1021/cs200652y.

    Article  CAS  Google Scholar 

  84. Hou TZ, Peng HJ, Huang JQ, Zhang Q, Li B. The formation of strong-couple interactions between nitrogen-doped graphene and sulfur/lithium (poly)sulfides in lithium-sulfur batteries. 2D Mater. 2015;2(1):014011. https://doi.org/10.1088/2053-1583/2/1/014011.

    Article  CAS  Google Scholar 

  85. Chen CY, Peng HJ, Hou TZ, Zhai PY, Li BQ, Tang C, Zhu WC, Huang JQ, Zhang Q. A quinonoid-Imine-enriched nanostructured polymer mediator for lithium-sulfur batteries. Adv Mater. 2017;29(23):1606802. https://doi.org/10.1002/adma.201606802.

    Article  CAS  Google Scholar 

  86. Hou TZ, Xu WT, Chen X, Peng HJ, Huang JQ, Zhang Q. lithium bond chemistry in lithium-sulfur batteries. Angew Chem-Int Edit. 2017;56(28):8178. https://doi.org/10.1002/anie.201704324.

    Article  CAS  Google Scholar 

  87. Li F, Su Y, Zhao JJ. Shuttle inhibition by chemical adsorption of lithium polysulfides in B and N co-doped graphene for Li-S batteries. Phys Chem Chem Phys. 2016;18(36):25241. https://doi.org/10.1039/C6CP04071C.

    Article  CAS  PubMed  Google Scholar 

  88. Zhou GM, Paek E, Hwang GS, Manthiram A. long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun. 2015;6(1):7760. https://doi.org/10.1038/ncomms8760.

    Article  CAS  PubMed  Google Scholar 

  89. Gu XX, Tong CJ, Lai C, Qiu JX, Huang XX, Yang WL, Wen B, Liu LM, Hou YL, Zhang SQ. A porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li-S batteries. J Mater Chem A. 2015;3(32):16670. https://doi.org/10.1039/C5TA04255K.

    Article  CAS  Google Scholar 

  90. Chen L, Feng JR, Zhou HH, Fu CP, Wang GC, Yang LM, Xu CX, Chen ZX, Yang WJ, Kuang YF. Hydrothermal preparation of nitrogen, boron co-doped curved graphene nanoribbons with high dopant amounts for high-performance lithium sulfur battery cathodes. J Mater Chem A. 2017;5(16):7403. https://doi.org/10.1039/C7TA01265A.

    Article  CAS  Google Scholar 

  91. Yuan SY, Bao JL, Wang LN, **a YY, Truhlar DG, Wang YG. Graphene-supported nitrogen and boron rich carbon layer for Improved performance of lithium-sulfur batteries due to enhanced chemisorption of lithium polysulfides. Adv Energy Mater. 2016;6(5):1501733. https://doi.org/10.1002/aenm.201501733.

    Article  CAS  Google Scholar 

  92. Liu XJ, Qian T, Liu J, Wang MF, Chen HL, Yan CL. High coulombic efficiency cathode with nitryl grafted sulfur for Li-S battery. Energy Storage Mater. 2019;17:260. https://doi.org/10.1016/j.ensm.2018.07.009.

    Article  Google Scholar 

  93. Seh ZW, Zhang QF, Li WY, Zheng GY, Yao HB, Cui Y. Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. Chem Sci. 2013;4(9):3673. https://doi.org/10.1039/C3SC51476E.

    Article  CAS  Google Scholar 

  94. Duan BC, Wang WK, Wang AB, Yuan KG, Yu ZB, Zhao HL, Qiu JY, Yang YS. Carbyne polysulfide as a novel cathode material for lithium/sulfur batteries. J Mater Chem A. 2013;1(42):13261. https://doi.org/10.1039/C3TA12634J.

    Article  CAS  Google Scholar 

  95. Wang XF, Qian YM, Wang LN, Yang H, Li HL, Zhao Y, Liu TX. Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries. Adv Funct Mater. 2019;29(39):1902929. https://doi.org/10.1002/adfm.201902929.

    Article  CAS  Google Scholar 

  96. Wang JL, Yang J, **e JY, Xu NX, Li Y. Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochem Commun. 2002;4(6):499. https://doi.org/10.1016/S1388-2481(02)00358-2.

    Article  CAS  Google Scholar 

  97. Wang L, He XM, Li JJ, Chen M, Gao J, Jiang CY. Charge/discharge characteristics of sulfurized polyacrylonitrile composite with different sulfur content in carbonate based electrolyte for lithium batteries. Electrochim Acta. 2012;72:114. https://doi.org/10.1016/j.electacta.2012.04.005.

    Article  CAS  Google Scholar 

  98. Wang J, Yang J, Wan C, Du K, **e J, Xu N. Sulfur composite cathode materials for rechargeable lithium batteries. Adv Funct Mater. 2003;13(6):487. https://doi.org/10.1002/adfm.200304284.

    Article  CAS  Google Scholar 

  99. Guo JC, Xu YH, Wang CS. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett. 2011;11(10):4288. https://doi.org/10.1021/nl202297p.

    Article  CAS  PubMed  Google Scholar 

  100. Bhargav A, Manthiram A. Xanthogen polysulfides as a new class of electrode material for rechargeable batteries. Adv Energy Mater. 2020;10(37):2001658. https://doi.org/10.1002/aenm.202001658.

    Article  CAS  Google Scholar 

  101. Bhargav A, Bell ME, Karty J, Cui Y, Fu YZ. A class of organopolysulfides as liquid cathode materials for high-energy-density lithium batteries. ACS Appl Mater Interfaces. 2018;10(25):21084. https://doi.org/10.1021/acsami.8b06803.

    Article  CAS  PubMed  Google Scholar 

  102. Li X, Yuan LX, Liu DZ, Li Z, Chen J, Yuan K, **ang JW, Huang YH. High sulfur-containing organosulfur polymer composite cathode embedded by monoclinic S for lithium sulfur batteries. Energy Storage Mater. 2020;26:570. https://doi.org/10.1016/j.ensm.2019.11.030.

    Article  Google Scholar 

  103. Zhang XY, Hu GJ, Chen K, Shen LY, **ao R, Tang P, Yan CL, Cheng HM, Sun ZH, Li F. Structure-related electrochemical behavior of sulfur-rich polymer cathode with solid-solid conversion in lithium-sulfur batteries. Energy Storage Mater. 2022;45:1144. https://doi.org/10.1016/j.ensm.2021.11.014.

    Article  Google Scholar 

  104. Hoefling A, Nguyen DT, Partovi-Azar P, Sebastiani D, Theato P, Song SW, Lee YJ. Mechanism for the stable performance of sulfur-copolymer cathode in lithium-sulfur battery studied by solid-state NMR spectroscopy. Chem Mat. 2018;30(9):2915. https://doi.org/10.1021/acs.chemmater.7b05105.

    Article  CAS  Google Scholar 

  105. Gomez I, Leonet O, Alberto Blazquez J, Grande H-J, Mecerreyes D. Poly(anthraquinonyl sulfides): high capacity redox polymers for energy storage. ACS Macro Lett. 2018;7(4):419. https://doi.org/10.1021/acsmacrolett.8b00154.

    Article  CAS  PubMed  Google Scholar 

  106. Qi S, Peng Q, Xu D, Guo C, Yang J, Dong H, Wang Y, Wu F, Chen S. In situ structural evolutions of sulfur-limonene polysulfides encapsulated in yeast-derived porous N-doped carbon spheres for high-performance Li-S batteries. Mater Today Chem. 2022;26:101138. https://doi.org/10.1016/j.mtchem.2022.101138.

    Article  CAS  Google Scholar 

  107. Wang J, Yang J, **e J, Xu N. A Novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Adv Mater. 2002;14(13–14):963. https://doi.org/10.1002/1521-4095(20020705)14:13/14%3c963::AID-ADMA963%3e3.0.CO;2-P.

    Article  CAS  Google Scholar 

  108. Zhou YL, Qu YP, Yin LT, Cheng WN, Huang YA, Fan RH. Coassembly of elastomeric microfibers and silver nanowires for fabricating ultra-stretchable microtextiles with weakly and tunable negative permittivity. Compos Sci Technol. 2022;223:109415. https://doi.org/10.1016/j.compscitech.2022.109415.

    Article  CAS  Google Scholar 

  109. Zhu Q, Xu HF, Shen K, Zhang YZ, Li B, Yang SB. Correction to: efficient polysulfides conversion on Mo2CTx MXene for high-performance lithium-sulfur batteries. Rare Met. 2022;41(1):311. https://doi.org/10.1007/s12598-022-01989-0.

    Article  CAS  Google Scholar 

  110. Wang D, Zhao ZY, Wang P, Wang SM, Feng M. Synthesis of MOF-derived nitrogen-doped carbon microtubules via template self-consumption. Rare Met. 2022;41(8):2582. https://doi.org/10.1007/s12598-022-01987-2.

    Article  CAS  Google Scholar 

  111. Geng PB, Wang L, Du M, Bai Y, Li WT, Liu YF, Chen SQ, Braunstein P, Xu Q, Pang H. MIL-96-Al for Li-S batteries: shape or size? Adv. Mater. 2022;34(4):2107836. https://doi.org/10.1002/adma.202107836.

    Article  CAS  Google Scholar 

  112. Yu XY, Yu L, Lou XW. Metal sulfide hollow nanostructures for electrochemical energy storage. Adv Energy Mater. 2016;6(3):1501333. https://doi.org/10.1002/aenm.201501333.

    Article  CAS  Google Scholar 

  113. Liu X, Huang JQ, Zhang Q, Mai LQ. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv Mater. 2017;29(20):1601759. https://doi.org/10.1002/adma.201601759.

    Article  CAS  Google Scholar 

  114. Pu J, Shen Z, Zheng J, Wu W, Zhu C, Zhou Q, Zhang H, Pan F. Multifunctional Co3S4@sulfur nanotubes for enhanced lithium-sulfur battery performance. Nano Energy. 2017;37:7. https://doi.org/10.1016/j.nanoen.2017.05.009.

    Article  CAS  Google Scholar 

  115. Yuan Z, Peng HJ, Hou TZ, Huang JQ, Chen CM, Wang DW, Cheng XB, Wei F, Zhang Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016;16(1):519. https://doi.org/10.1021/acs.nanolett.5b04166.

    Article  CAS  PubMed  Google Scholar 

  116. Zheng JM, Tian J, Wu DX, Gu M, Xu W, Wang CM, Gao F, Engelhard MH, Zhang JG, Liu J, **ao J. Lewis acid-base Interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett. 2014;14(5):2345. https://doi.org/10.1021/nl404721h.

    Article  CAS  PubMed  Google Scholar 

  117. Pan TY, Li ZH, He Q, Xu X, He L, Meng JS, Zhou C, Zhao Y, Mai LQ. Uniform zeolitic imidazolate framework coating via in situ recoordination for efficient polysulfide trap**. Energy Storage Mater. 2019;23:55. https://doi.org/10.1016/j.ensm.2019.05.034.

    Article  Google Scholar 

  118. Liang X, Garsuch A, Nazar LF. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew Chem-Int Edit. 2015;54(13):3907. https://doi.org/10.1002/anie.201410174.

    Article  CAS  Google Scholar 

  119. Zhu Q, Xu HF, Shen K, Zhang YZ, Li B, Yang SB. Efficient polysulfides conversion on Mo2CTx MXene for high-performance lithium-sulfur batteries. Rare Met. 2022;41(1):311. https://doi.org/10.1007/s12598-021-01839-5.

    Article  CAS  Google Scholar 

  120. Huang YH, Yang HC, Zhang Y, Zhang YM, Wu YT, Tian MK, Chen P, Trout R, Ma Y, Wu TH, Wu YP, Liu N. A safe and fast-charging lithium-ion battery anode using MXene supported Li3VO4. J Mater Chem A. 2019;7(18):11250. https://doi.org/10.1039/C9TA02037C.

    Article  CAS  Google Scholar 

  121. Yu LH, Tao X, Feng SR, Liu JT, Zhang LL, Zhao GZ, Zhu G. Recent development of three-dimension printed graphene oxide and MXene-based energy storage devices. Tungsten. 2024;6(1):176. https://doi.org/10.1007/s42864-022-00181-2.

    Article  Google Scholar 

  122. **ao ZB, Li ZL, Li PY, Meng XP, Wang RH. Ultrafine Ti3C2 MXene nanodots-Interspersed nanosheet for high-energy-density lithium-sulfur batteries. ACS Nano. 2019;13(3):3608. https://doi.org/10.1021/acsnano.9b00177.

    Article  CAS  PubMed  Google Scholar 

  123. Dong HH, Qi S, Wang L, Chen XF, **ao Y, Wang Y, Sun B, Wang GX, Chen SQ. Conductive polymer coated layered double hydroxide as a novel sulfur reservoir for flexible lithium-sulfur batteries. Small. 2023;19(30):2300843. https://doi.org/10.1002/smll.202300843.

    Article  CAS  Google Scholar 

  124. Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat Commun. 2015;6(1):5682. https://doi.org/10.1038/ncomms6682.

    Article  PubMed  Google Scholar 

  125. Rehman S, Tang TY, Ali Z, Huang XX, Hou YL. Integrated design of MnO2@Carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries. Small. 2017;13(20):1700087. https://doi.org/10.1002/smll.201700087.

    Article  CAS  Google Scholar 

  126. Liang X, Kwok CY, Lodi-Marzano F, Pang Q, Cuisinier M, Huang H, Hart CJ, Houtarde D, Kaup K, Sommer H, Brezesinski T, Janek J, Nazar LF. Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: The “goldilocks” principle. Adv Energy Mater. 2016;6(6):1501636. https://doi.org/10.1002/aenm.201501636.

    Article  CAS  Google Scholar 

  127. Luo JS, Liu JL, Zeng ZY, Ng CF, Ma LJ, Zhang H, Lin JY, Shen ZX, Fan HJ. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 2013;13(12):6136. https://doi.org/10.1021/nl403461n.

    Article  CAS  PubMed  Google Scholar 

  128. Yan N, Zhou XH, Li Y, Wang F, Zhong H, Wang H, Chen QW. Fe2O3 nanoparticles wrapped in multi-walled carbon nanotubes with enhanced lithium storage capability. Sci Rep. 2013;3(1):3392. https://doi.org/10.1038/srep03392.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Lee SK, Kim H, Bang S, Myung ST, Sun YK. WO3 nanowire/carbon nanotube interlayer as a chemical adsorption mediator for high-performance lithium-sulfur batteries. Molecules. 2021;26(2):377. https://doi.org/10.3390/molecules26020377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang M, Chen W, Xue LX, Jiao Y, Lei TY, Chu JW, Huang JW, Gong CH, Yan CY, Yan YC, Hu Y, Wang XF, **ong J. Adsorption-catalysis design in the lithium-sulfur battery. Adv Energy Mater. 2020;10(2):1903008. https://doi.org/10.1002/aenm.201903008.

    Article  CAS  Google Scholar 

  131. Liu DH, Zhang C, Zhou GM, Lv W, Ling GW, Zhi LJ, Yang QH. Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv Sci. 2018;5(1):1700270. https://doi.org/10.1002/advs.201700270.

    Article  CAS  Google Scholar 

  132. Wang YK, Zhang RF, Chen J, Wu H, Lu SY, Wang K, Li HL, Harris CJ, ** K, Kumar RV, Ding SJ. Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering. Adv Energy Mater. 2019;9(24):1900953. https://doi.org/10.1002/aenm.201900953.

    Article  CAS  Google Scholar 

  133. Zheng C, Niu SZ, Lv W, Zhou GM, Li J, Fan SX, Deng YQ, Pan ZZ, Li B, Kang FY, Yang QH. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries. Nano Energy. 2017;33:306\. https://doi.org/10.1016/j.nanoen.2017.01.040.

    Article  CAS  Google Scholar 

  134. Zhou GM, Tian HZ, ** Y, Tao XY, Liu B, Zhang RF, Seh ZW, Zhuo D, Liu YY, Sun J, Zhao J, Zu CX, Wu DS, Zhang QF, Cui Y. Catalytic oxidation of Li2S on the surface of metal sulfides for Li−S batteries. Proc Natl Acad Sci. 2017;114(5):840. https://doi.org/10.1073/pnas.1615837114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yang XF, Gao XJ, Sun Q, Jand SP, Yu Y, Zhao Y, Li X, Adair K, Kuo LY, Rohrer J, Liang JN, Lin XT, Banis MN, Hu YF, Zhang HZ, Li XF, Li RY, Zhang HM, Kaghazchi P, Sham TK, Sun XL. Promoting the transformation of Li2S2 to Li2S: significantly increasing utilization of active materials for high-sulfur-loading Li-S batteries. Adv Mater. 2019;31(25):1901220. https://doi.org/10.1002/adma.201901220.

    Article  CAS  Google Scholar 

  136. Chen B, Chao DL, Liu E, Jaroniec M, Zhao N, Qiao SZ. Transition metal dichalcogenides for alkali metal ion batteries: engineering strategies at the atomic level. Energy Environ Sci. 2020;13(4):1096. https://doi.org/10.1039/C9EE03549D.

    Article  CAS  Google Scholar 

  137. Liu ZH, Lian RQ, Wu ZR, Li YJ, Lai XY, Yang S, Ma X, Wei YJ, Yan X. Ordered dual-channel carbon embedded with molybdenum nitride catalytically induced high-performance lithium-sulfur battery. Chem Eng J. 2022;431: 134163. https://doi.org/10.1016/j.cej.2021.134163.

    Article  CAS  Google Scholar 

  138. Yang XY, Chen S, Gong WB, Meng XD, Ma JP, Zhang J, Zheng LR, Abruña HD, Geng JX. Kinetic enhancement of sulfur cathodes by N-doped porous graphitic carbon with bound VN nanocrystals. Small. 2020;16(48):2004950. https://doi.org/10.1002/smll.202004950.

    Article  CAS  Google Scholar 

  139. Yu MP, Ma JS, Song HQ, Wang AJ, Tian FY, Wang YS, Qiu H, Wang RM. Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium-sulfur batteries. Energy Environ Sci. 2016;9(4):1495. https://doi.org/10.1039/C5EE03902A.

    Article  CAS  Google Scholar 

  140. Wang ML, Song YZ, Sun ZT, Shao YL, Wei CH, **a Z, Tian ZG, Liu ZF, Sun JY. Conductive and catalytic VTe2@MgO heterostructure as effective polysulfide promotor for lithium-sulfur batteries. ACS Nano. 2019;13(11):13235. https://doi.org/10.1021/acsnano.9b06267.

    Article  CAS  PubMed  Google Scholar 

  141. Hao QY, Cui GL, Zhang YG, Li JD, Zhang ZS. Novel MoSe2/MoO2 heterostructure as an effective sulfur host for high-performance lithium/sulfur batteries. Chem Eng J. 2020;381:122672. https://doi.org/10.1016/j.cej.2019.122672.

    Article  CAS  Google Scholar 

  142. Du ZZ, Chen XJ, Hu W, Chuang CH, **e S, Hu AJ, Yan WS, Kong XH, Wu XJ, Ji HX, Wan LJ. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J Am Chem Soc. 2019;141(9):3977. https://doi.org/10.1021/jacs.8b12973.

    Article  CAS  PubMed  Google Scholar 

  143. Cuisinier M, Cabelguen PE, Evers S, He G, Kolbeck M, Garsuch A, Bolin T, Balasubramanian M, Nazar LF. Sulfur speciation in Li-S batteries determined by operando X-ray absorption spectroscopy. J Phys Chem Lett. 2013;4(19):3227. https://doi.org/10.1021/jz401763d.

    Article  CAS  Google Scholar 

  144. **e J, Li BQ, Peng HJ, Song YW, Zhao M, Chen X, Zhang Q, Huang JQ. Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries. Adv Mater. 2019;31(43):1903813. https://doi.org/10.1002/adma.201903813.

    Article  CAS  Google Scholar 

  145. Chen JJ, Gu S, Hao R, Wang ZY, Li MQ, Li ZQ, Liu K, Liao KM, Wang ZQ, Huang H, Li YZ, Zhang KL, Lu ZG. Co single atoms and nanoparticles dispersed on N-doped carbon nanotube as high-performance catalysts for Zn-air batteries. Rare Met. 2022;41(6):2055. https://doi.org/10.1007/s12598-022-01974-7.

    Article  CAS  Google Scholar 

  146. Xu KL, Zhu MG, Zhu LQ, Li DY, Zhang WQ, Huang T, Zhu YC, Qian YT. Promoting spherical epitaxial deposition of solid sulfides for high-capacity Li-S batteries. J Mater Chem A. 2020;8(15):7100. https://doi.org/10.1039/C9TA13893E.

    Article  CAS  Google Scholar 

  147. Han ZY, Zhao SY, **ao JW, Zhong XW, Sheng JZ, Lv W, Zhang QF, Zhou GM, Cheng HM. Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries. Adv Mater. 2021;33(44):2105947. https://doi.org/10.1002/adma.202105947.

    Article  CAS  Google Scholar 

  148. Lin L, Li H, Yan CC, Li HF, Si R, Li MR, **ao JP, Wang GX, Bao XH. Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv Mater. 2019;31(41):1903470. https://doi.org/10.1002/adma.201903470.

    Article  CAS  Google Scholar 

  149. Zhang J, Huang QA, Wang J, Wang J, Zhang JJ, Zhao YF. Supported dual-atom catalysts: preparation, characterization, and potential applications. Chin J Catal. 2020;41(5):783. https://doi.org/10.1016/S1872-2067(20)63536-7.

    Article  CAS  Google Scholar 

  150. Zhu WJ, Zhang L, Liu S, Li A, Yuan XT, Hu CL, Zhang G, Deng WY, Zang KT, Luo J, Zhu YM, Gu M, Zhao ZJ, Gong JL. Enhanced CO2 electroreduction on neighboring Zn/Co monomers by electronic effect. Angew Chem-Int Edit. 2020;59(31):12664. https://doi.org/10.1002/anie.201916218.

    Article  CAS  Google Scholar 

  151. Gong SP, Wang CL, Jiang P, Hu L, Lei H, Chen QW. Designing highly efficient dual-metal single-atom electrocatalysts for the oxygen reduction reaction inspired by biological enzyme systems. J Mater Chem A. 2018;6(27):13254. https://doi.org/10.1039/C8TA04564J.

    Article  CAS  Google Scholar 

  152. Shen L, Song YW, Wang J, Zhao CX, Bi CX, Sun SY, Zhang XQ, Li BQ, Zhang Q. Synergistic catalysis on dual-atom sites for high-performance lithium-sulfur batteries. Small Struct. 2023;4(6):2200205. https://doi.org/10.1002/sstr.202200205.

    Article  CAS  Google Scholar 

  153. Fang LZ, Feng ZG, Cheng L, Winans RE, Li T. Design principles of single atoms on carbons for lithium-sulfur batteries. Small Methods. 2020;4(10):2000315. https://doi.org/10.1002/smtd.202000315.

    Article  CAS  Google Scholar 

  154. Zhou WY, Cao GZ, Yuan MX, Zhong SL, Wang YD, Liu XR, Cao D, Peng WW, Liu J, Wang GH, Dang ZM, Li B. Core-shell engineering of conductive fillers toward enhanced dielectric properties: a universal polarization mechanism in polymer conductor composites. Adv Mater. 2023;35(2):2207829. https://doi.org/10.1002/adma.202207829.

    Article  CAS  Google Scholar 

  155. Zhao DC, Zhang Z, Ren JH, Xu YY, Xu XY, Zhou J, Gao F, Tang H, Liu SP, Wang ZL, Wang D, Wu YT, Liu X, Zhang Y. Fe2VO4 nanoparticles on rGO as anode material for high-rate and durable lithium and sodium ion batteries. Chem Eng J. 2023;451:138882. https://doi.org/10.1016/j.cej.2022.138882.

    Article  CAS  Google Scholar 

  156. Pang Q, Kundu DP, Cuisinier M, Nazar LF. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat Commun. 2014;5(1):4759. https://doi.org/10.1038/ncomms5759.

    Article  CAS  PubMed  Google Scholar 

  157. Mosavati N, Chitturi VR, Arava LMR, Salley SO, Ng KYS. Effects of nickel particle size and graphene support on the electrochemical performance of lithium/dissolved polysulfide batteries. Electrochim Acta. 2015;185:297. https://doi.org/10.1016/j.electacta.2015.10.061.

    Article  CAS  Google Scholar 

  158. Boyjoo Y, Shi HD, Olsson E, Cai Q, Wu ZS, Liu J, Lu GQ. Molecular-level design of pyrrhotite electrocatalyst decorated hierarchical porous carbon spheres as nanoreactors for lithium-sulfur batteries. Adv Energy Mater. 2020;10(20):2000651. https://doi.org/10.1002/aenm.202000651.

    Article  CAS  Google Scholar 

  159. Yan DF, Li YX, Huo J, Chen R, Dai LM, Wang SY. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv Mater. 2017;29(48):1606459. https://doi.org/10.1002/adma.201606459.

    Article  CAS  Google Scholar 

  160. Yang CH, Zhu YT, Liu JQ, Qin YC, Wang HQ, Liu HL, Chen YN, Zhang ZC, Hu WP. Defect engineering for electrochemical nitrogen reduction reaction to ammonia. Nano Energy. 2020;77:105126. https://doi.org/10.1016/j.nanoen.2020.105126.

    Article  CAS  Google Scholar 

  161. Shi ZX, Sun ZT, Cai JS, Yang XZ, Wei CH, Wang ML, Ding YF, Sun JY. Manipulating electrocatalytic Li2S redox via selective dual-defect engineering for Li-S batteries. Adv Mater. 2021;33(43):2103050. https://doi.org/10.1002/adma.202103050.

    Article  CAS  Google Scholar 

  162. Li BQ, Kong L, Zhao CX, ** Q, Chen X, Peng HJ, Qin JL, Chen JX, Yuan H, Zhang Q, Huang JQ. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium-sulfur batteries. InfoMat. 2019;1(4):533. https://doi.org/10.1002/inf2.12056.

    Article  CAS  Google Scholar 

  163. Li HT, Chen C, Yan YY, Yan TR, Cheng C, Sun D, Zhang L. Utilizing the built-in electric field of p-n junctions to spatially propel the stepwise polysulfide conversion in lithium-sulfur batteries. Adv Mater. 2021;33(51):2105067. https://doi.org/10.1002/adma.202105067.

    Article  CAS  Google Scholar 

  164. Zuo JH, Zhai PB, He QQ, Wang L, Chen Q, Gu XK, Yang ZL, Gong YJ. In-situ constructed three-dimensional MoS2-MoN heterostructure as the cathode of lithium-sulfur battery. Rare Met. 2022;41(5):1743. https://doi.org/10.1007/s12598-021-01910-1.

    Article  CAS  Google Scholar 

  165. Xu R, Tang HA, Zhou YY, Wang FZ, Wang HR, Shao MH, Li CP, Wei ZD. Enhanced catalysis of radical-to-polysulfide interconversion via increased sulfur vacancies in lithium-sulfur batteries. Chem Sci. 2022;13(21):6224. https://doi.org/10.1039/D2SC01353C.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lin QY, Ding B, Chen S, Li P, Li ZW, Shi YY, Dou H, Zhang XG. Atomic layer deposition of single atomic cobalt as a catalytic interlayer for lithium-sulfur batteries. ACS Appl Energ Mater. 2020;3(11):11206. https://doi.org/10.1021/acsaem.0c02141.

    Article  CAS  Google Scholar 

  167. Qiu Y, Fan LS, Wang MX, Yin XJ, Wu X, Sun X, Tian D, Guan B, Tang DY, Zhang NQ. Precise synthesis of Fe-N2 sites with high activity and stability for long-life lithium-sulfur batteries. ACS Nano. 2020;14(11):16105. https://doi.org/10.1021/acsnano.0c08056.

    Article  CAS  PubMed  Google Scholar 

  168. Li YJ, Wu JB, Zhang B, Wang WY, Zhang GQ, Seh ZW, Zhang N, Sun J, Huang L, Jiang JJ, Zhou J, Sun YM. Fast conversion and controlled deposition of lithium (poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms. Energy Storage Mater. 2020;30:250. https://doi.org/10.1016/j.ensm.2020.05.022.

    Article  Google Scholar 

  169. Su L, Zhang JQ, Chen Y, Yang W, Wang J, Ma ZQ, Shao GJ, Wang GX. Cobalt-embedded hierarchically-porous hollow carbon microspheres as multifunctional confined reactors for high-loading Li-S batteries. Nano Energy. 2021;85:105981. https://doi.org/10.1016/j.nanoen.2021.105981.

    Article  CAS  Google Scholar 

  170. Zhou GM, Zhao SY, Wang TS, Yang SZ, Johannessen B, Chen H, Liu CW, Ye YS, Wu YC, Peng YC, Liu C, Jiang SP, Zhang QF, Cui Y. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries. Nano Lett. 2020;20(2):1252. https://doi.org/10.1021/acs.nanolett.9b04719.

    Article  CAS  PubMed  Google Scholar 

  171. Zhang XM, Yang TZ, Zhang YG, Wang XB, Wang JY, Li YB, Yu AP, Wang X, Chen ZW. Single zinc atom aggregates: synergetic interaction to boost fast polysulfide conversion in lithium-sulfur batteries. Adv Mater. 2023;35(6):2208470. https://doi.org/10.1002/adma.202208470.

    Article  CAS  Google Scholar 

  172. Ding YF, Cheng QS, Wu JH, Yan TR, Shi ZX, Wang ML, Yang DZ, Wang P, Zhang L, Sun JY. Enhanced dual-directional sulfur redox via a biotemplated single-atomic Fe-N2 mediator promises durable Li-S batteries. Adv Mater. 2022;34(28):2202256. https://doi.org/10.1002/adma.202202256.

    Article  CAS  Google Scholar 

  173. Ni J, ** LM, Xue MZ, Zheng JS, Zheng JP, Zhang CM. TiO2 microboxes as effective polysufide reservoirs for lithium sulfur batteries. Electrochim Acta. 2019;296:39. https://doi.org/10.1016/j.electacta.2018.11.030.

    Article  CAS  Google Scholar 

  174. Ding M, Huang SZ, Wang Y, Hu JP, Pam ME, Fan S, Shi YM, Ge Q, Yang HY. Promoting polysulfide conversion by catalytic ternary Fe3O4/carbon/graphene composites with ordered microchannels for ultrahigh-rate lithium-sulfur batteries. J Mater Chem A. 2019;7(43):25078. https://doi.org/10.1039/C9TA06489C.

    Article  CAS  Google Scholar 

  175. Liu YT, Han DD, Wang L, Li GR, Liu S, Gao XP. NiCo2O4 nanofibers as carbon-free sulfur immobilizer to fabricate sulfur-based composite with high volumetric capacity for lithium-sulfur battery. Adv Energy Mater. 2019;9(11):1803477. https://doi.org/10.1002/aenm.201803477.

    Article  CAS  Google Scholar 

  176. Jo C, Hwang J, Lim WG, Lim J, Hur K, Lee JW. Multiscale phase separations for hierarchically ordered macro/mesostructured metal oxides. Adv Mater. 2018;30(6):1703829. https://doi.org/10.1002/adma.201703829.

    Article  CAS  Google Scholar 

  177. Lim WG, Jo CS, Cho A, Hwang J, Kim S, Han JW, Lee J. Approaching ultrastable high-rate Li-S batteries through hierarchically porous titanium nitride synthesized by multiscale phase separation. Adv Mater. 2019;31(3):1806547. https://doi.org/10.1002/adma.201806547.

    Article  CAS  Google Scholar 

  178. Wang YZ, Li M, Xu LC, Tang TY, Ali ZS, Huang XX, Hou YL, Zhang SQ. Polar and conductive iron carbide@N-doped porous carbon nanosheets as a sulfur host for high performance lithium sulfur batteries. Chem Eng J. 2019;358:962. https://doi.org/10.1016/j.cej.2018.10.086.

    Article  CAS  Google Scholar 

  179. Qu WJ, Lu ZY, Geng CN, Wang L, Guo Y, Zhang YB, Wang WC, Lv W, Yang QH. Targeted catalysis of the sulfur evolution reaction for high-performance lithium-sulfur batteries. Adv Energy Mater. 2022;12(38):2202232. https://doi.org/10.1002/aenm.202202232.

    Article  CAS  Google Scholar 

  180. Wang B, Wang L, Zhang B, Zeng SY, Tian F, Dou JM, Qian YT, Xu LQ. Niobium diboride nanoparticles accelerating polysulfide conversion and directing Li2S nucleation enabled high areal capacity lithium-sulfur batteries. ACS Nano. 2022;16(3):4947. https://doi.org/10.1021/acsnano.2c01179.

    Article  CAS  PubMed  Google Scholar 

  181. **a WL, Chen Y, Wang WX, Lu Y, Chen YF, Chen MF, Yang XK, Gao P, Shu HB, Wang XY. Enhanced catalytic activity of Co-CoO via VC0.75 heterostructure enables fast redox kinetics of polysulfides in lithium-sulfur batteries. Chem Eng J. 2023;458:141477. https://doi.org/10.1016/j.cej.2023.141477.

    Article  CAS  Google Scholar 

  182. Zhang H, Zhang YW, Li L, Zhou HX, Wang MC, Li LX, Geng X, An BG, Sun CG. A rational design of titanium-based heterostructures as electrocatalyst for boosted conversion kinetics of polysulfides in Li-S batteries. J Colloid Interface Sci. 2023;633:432. https://doi.org/10.1016/j.jcis.2022.11.092.

    Article  CAS  PubMed  Google Scholar 

  183. Chu RR, Nguyen TT, Bai YQ, Kim NH, Lee JH. Uniformly controlled treble boundary using enriched adsorption sites and accelerated catalyst cathode for robust lithium-sulfur batteries. Adv Energy Mater. 2022;12(9):2102805. https://doi.org/10.1002/aenm.202102805.

    Article  CAS  Google Scholar 

  184. Pu J, Wang ZH, Xue P, Zhu KP, Li JC, Yao YG. The effect of NiO-Ni3N interfaces in in-situ formed heterostructure ultrafine nanoparticles on enhanced polysulfide regulation in lithium-sulfur batteries. J Energy Chem. 2022;68:762. https://doi.org/10.1016/j.jechem.2021.12.043.

    Article  CAS  Google Scholar 

  185. Qin B, Wang Q, Yao WQ, Cai YF, Chen YH, Wang PC, Zou YC, Zheng XH, Cao J, Qi JL, Cai W. Heterostructured Mn3O4-MnS multi-shelled hollow spheres for enhanced polysulfide regulation in lithium-sulfur batteries. Energy Environ Mater. 2023;6:e12475. https://doi.org/10.1002/eem2.12475.

    Article  CAS  Google Scholar 

  186. Lu DZ, Wang XY, Hu YJ, Yue LG, Shao ZH, Zhou WL, Chen L, Wang W, Li YY. Expediting stepwise sulfur conversion via spontaneous built-In electric field and binary sulfiphilic effect of conductive NbB2-MXene heterostructure in lithium-sulfur batteries. Adv Funct Mater. 2023;33(15):2212689. https://doi.org/10.1002/adfm.202212689.

    Article  CAS  Google Scholar 

  187. Zhou ZY, Chen ZX, Lv HF, Zhao Y, Wei HL, Chen BB, Wang Y. A hollow Co0.12Ni1.88S2/NiO heterostructure that synergistically facilitates lithium polysulfide adsorption and conversion for lithium-sulfur batteries. Energy Storage Mater. 2022;51:486. https://doi.org/10.1016/j.ensm.2022.07.001.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52105575 & 52205593), the Fundamental Research Funds for the Central Universities (No. QTZX23063), the Proof of Concept Foundation of **dian University Hangzhou Institute of Technology (Nos. GNYZ2023YL0302 & GNYZ2023QC0401), and the Aeronautical Science Foundation of China (No. 2022Z073081001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **ang Liu, Yi Zhang or Shan Jiang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, XY., **ang, SF., Zhou, J. et al. Recent progress and strategies of cathodes toward polysulfides shuttle restriction for lithium-sulfur batteries. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02708-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02708-7

Keywords

Navigation