Log in

Metal-to-insulator transition in platinum group compounds

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The metal-to-insulator transition (MIT) as usually achieved in 3d-orbital transitional metal (TM) compounds opens up a new paradigm in correlated electronics via triggering abrupt variations in their transportation properties. Compared to such 3d-orbital TM compounds, the MIT within the platinum group (Pg) element compounds based on the 4d- and 5d-orbital configurations is more complicated, owing to their elevation in the spin–orbit coupling and meanwhile weakened intra-atomic Coulomb repulsions. This brings in a new freedom to regulate the balance in their metallic or semiconductive orbital configurations, while their MIT properties can be potentially combined with their spintronic properties to enable new electronic applications. Herein, we review the electronic transport and MIT behaviors within the existing family of Pg-containing compounds, particularly those showing first-order MIT behaviors that can be useful in correlated electronics. It is also hoped that summarizing the presently reported Pg-containing MIT compounds will lead to the discovery of more new material families and/or new mechanisms associated with the Pg-containing compounds showing MIT properties.

Graphical Abstract

摘要

通常在3d轨道过渡金属(TM)化合物中实现的金属绝缘体相变(MIT)通过触发其电输运特性的突然变化,为**关联电子学开辟了新的范式。与3d轨道过渡金属化合物相比,基于4d和5d轨道构型的铂族(Pg)元素化合物的MIT更为复杂,因为它们的自旋-轨道耦合作用增**,同时原子内库仑排斥力减弱。这为调节其金属或半导体轨道构型中的**衡带来了新的自由度,而它们的MIT特性可以潜在地与其自旋电子学特性相结合,以实现新的电子应用。在本文中,我们回顾了现有含铂族元素化合物家族中的电传输和MIT行为,特别是那些在**相关电子学中有用的一阶MIT行为,同时希望总结目前报道过的含铂族元素的MIT化合物将引导发现更多与表现MIT性质的含Pg化合物相关的新材料家族和/或新机制。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [21]. Copyright 2008, American Physical Society. c Factors affecting metal-to-insulator transition property in 3d-/4d-/5d-transition metal materials

Fig. 2

Copyright 1969, American Chemical Society

Fig. 3

Copyright 2000, the American Physical Society. b Plotting TMIT as a function of elementary substitution amount (x) for Ca-site and Ru-site within Ca2RuO4 [43, 56]. c Plotting resistive change across metal to insulator transition (ρInsul./ρMet.) as a function of x for Ca-site and Ru-site within Ca2RuO4; d plotting ρInsul./ρMet. as a function of TMIT for doped Ca2RuO4; e temperature dependence of material resistivity for Ae3Pg2O7 (n = 2) [59,60,61]. f Temperature dependence of material resistivity for AePgO3 (n = ∞) [22, 62,63,64, 67, 115]

Fig. 4

Copyright 1994, Elsevier. b Temperature dependence of material resistivity for RE2Ir2O7, RE2Os2O7, Cd2Ir2O7, Cd2Os2O7 and Hg2Os2O7 [24, 78, 80,81,82]. Reproduced with permission from Ref. [78]. Copyright 2011, the Physical Society of Japan

Fig. 5
Fig. 6
Fig. 7

Copyright 2012, the American Physical Society. b Temperature dependence of material resistivity normalized to 300 K for REPg4Pn12 (inset) crystal structure of REPg4Pn12 [108,109,110,111,112]

Fig. 8

Similar content being viewed by others

References

  1. Chen J, Li Z, Dong H, Xu J, Wang V, Feng Z, Chen Z, Chen B, Chen N, Mao HK. Pressure induced unstable electronic states upon correlated nickelates metastable perovskites as batch synthesized via heterogeneous nucleation. Adv Funct Mater. 2020;30(23):2000987. https://doi.org/10.1002/adfm.202000987.

    Article  CAS  Google Scholar 

  2. Shi J, Ha SD, Zhou Y, Schoofs F, Ramanathan S. A correlated nickelate synaptic transistor. Nat Commun. 2013;4(1):2676. https://doi.org/10.1038/ncomms3676.

    Article  CAS  PubMed  Google Scholar 

  3. Li SY, Niklasson GA, Granqvist CG. Thermochromic undoped and Mg-doped VO2 thin films and nanoparticles: optical properties and performance limits for energy efficient windows. J Appl Phys. 2014;115(5):053513. https://doi.org/10.1063/1.4862930.

    Article  CAS  Google Scholar 

  4. Liang J, Hu M, Kan Q, Liang X, Wang X, Li G, Chen H. Infrared transition properties of vanadium dioxide thin films across semiconductor-metal transition. Rare Met. 2011;30(3):247. https://doi.org/10.1007/s12598-011-0376-4.

    Article  CAS  Google Scholar 

  5. Shahsafi A, Roney P, Zhou Y, Zhang Z, **ao Y, Wan C, Wambold R, Salman J, Yu Z, Li J, Sadowski JT, Comin R, Ramanathan S, Kats MA. Temperature-independent thermal radiation. PNAS. 2019;116(52):26402. https://doi.org/10.1073/pnas.1911244116.

    Article  CAS  Google Scholar 

  6. Stefanovich G, Pergament A, Stefanovich D. Electrical switching and Mott transition in VO2. J Phys Condens Matter. 2000;12(41):8837. https://doi.org/10.1088/0953-8984/12/41/310.

    Article  CAS  Google Scholar 

  7. Thorsteinsson EB, Shayestehaminzadeh S, Arnalds UB. Tuning metal-insulator transitions in epitaxial V2O3 thin films. Appl Phys Lett. 2018;112(16):161902. https://doi.org/10.1063/1.5023180.

    Article  CAS  Google Scholar 

  8. Wang L, Hao YQ, Ma W, Liang S. Improving phase transition temperature of VO2 via Ge do**: a combined experimental and theoretical study. Rare Met. 2021;40(5):1337. https://doi.org/10.1007/s12598-020-01655-3.

    Article  CAS  Google Scholar 

  9. Fernández-Dĺaz MT, Alonso JA, Martĺnez-Lope MJ, Casais MT, Garcĺa-Muñoz JL, Aranda MAG. Charge disproportionation in RNiO3 perovskites. Phys B Condens Matter. 2000;276–278:218. https://doi.org/10.1016/S09214526(99)01416-7.

    Article  Google Scholar 

  10. Li XY, Li ZA, Yan FB, Zhang H, Wang JO, Ke XY, Jiang Y, Chen NF, Chen JK. Batch synthesis of rare-earth nickelates electronic phase transition perovskites via rare-earth processing intermediates. Rare Met. 2022;41(10):3495. https://doi.org/10.1007/s12598-022-02033-x.

    Article  CAS  Google Scholar 

  11. Catalano S, Gibert M, Fowlie J, Iniguez J, Triscone JM, Kreisel J. Rare-earth nickelates RNiO3: thin films and heterostructures. Rep Prog Phys. 2018;81(4):046501. https://doi.org/10.1088/1361-6633/aaa37a.

    Article  CAS  PubMed  Google Scholar 

  12. Wang ZM, Feng XX, **e ZX, Li YM. Preparation and characterization of La1xBaxFeO3δ cathode materials for intermediate-temperature solid oxide fuel cell. Chin J Rare Met. 2021;45(10):1192. https://doi.org/10.13373/j.cnki.cjrm.xy19080033.

    Article  CAS  Google Scholar 

  13. Yamada I, Etani H, Tsuchida K, Marukawa S, Hayashi N, Kawakami T, Mizumaki M, Ohgushi K, Kusano Y, Kim J, Tsuji N, Takahashi R, Nishiyama N, Inoue T, Irifune T, Takano M. Control of bond-strain-induced electronic phase transitions in iron perovskites. Inorg Chem. 2013;52(23):13751. https://doi.org/10.1021/ic402344m.

    Article  CAS  PubMed  Google Scholar 

  14. Knížek K, Jirák Z, Hejtmánek J, Veverka M, Maryško M, Hauback BC, Fjellvåg H. Structure and physical properties of YCoO3 at temperatures up to 1000K. Phys Rev B. 2006;73(21):214443. https://doi.org/10.1103/PhysRevB.73.214443.

    Article  CAS  Google Scholar 

  15. Jirák Z, Hejtmánek J, Knížek K, Veverka M. Electrical resistivity and thermopower measurements of the hole- and electron-doped cobaltites LnCoO3. Phys Rev B. 2008;78(1):014432. https://doi.org/10.1103/PhysRevB.78.014432.

    Article  CAS  Google Scholar 

  16. Knížek K, Jirák Z, Hejtmánek J, Veverka M, Maryško M, Maris G, Palstra TTM. Structural anomalies associated with the electronic and spin transitions in LnCoO3. Eur Phys J B Condens Matter Complex Syst. 2005;47(2):213. https://doi.org/10.1140/epjb/e2005-00320-3.

    Article  CAS  Google Scholar 

  17. Marozau I, Das PT, Döbeli M, Storey JG, Uribe-Laverde MA, Das S, Wang C, Rössle M, Bernhard C. Influence of La and Mn vacancies on the electronic and magnetic properties of LaMnO3 thin films grown by pulsed laser deposition. Phys Rev B. 2014;89(17):174422. https://doi.org/10.1103/PhysRevB.89.174422.

    Article  CAS  Google Scholar 

  18. Mavani KR, Paulose PL. Effects of cation disorder and size on metamagnetism in a-site substituted Pr0.5Ca0.5MnO3 system. Appl Phys Lett. 2005;86(16):162504. https://doi.org/10.1063/1.1905786.

    Article  CAS  Google Scholar 

  19. Liu N, Guo T, Yan GQ, Zhu G, Guo HY. Magneto-electric behaviors of La0.67xNdxSr0.33MnO3 system. Rare Met. 2022;41(4):1357. https://doi.org/10.1007/s12598-015-0538-x.

    Article  CAS  Google Scholar 

  20. Gao T, Cao S, Liu Y, Zhang Y, Zhang J. Cu-do** induced ferromagnetic insulating behavior and domain wall pinning effects in LaMnO3. Rare Met. 2011;30(4):359. https://doi.org/10.1007/s12598-011-0397-z.

    Article  CAS  Google Scholar 

  21. Kim BJ, ** H, Moon SJ, Kim JY, Park BG, Leem CS, Yu J, Noh TW, Kim C, Oh SJ, Park JH, Durairaj V, Cao G, Rotenberg E. Novel Jeff = 1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4. Phys Rev Lett. 2008;101(7):076402. https://doi.org/10.1103/PhysRevLett.101.076402.

    Article  CAS  PubMed  Google Scholar 

  22. Yamaura K, Takayama-Muromachi E. Enhanced paramagnetism of the 4d itinerant electrons in the rhodium oxide perovskite SrRhO3. Phys Rev B. 2001;64(22):224424. https://doi.org/10.1103/PhysRevB.64.224424.

    Article  CAS  Google Scholar 

  23. Sala MM, Ohgushi K, Al-Zein A, Hirata Y, Monaco G, Krisch M. CaIrO3: a spin-orbit Mott insulator beyond the jeff = 1/2 ground state. Phys Rev Lett. 2014;112(17):176402. https://doi.org/10.1103/PhysRevLett.112.176402.

    Article  CAS  PubMed  Google Scholar 

  24. Dai J, Yin Y, Wang X, Shen X, Liu Z, Ye X, Cheng J, ** C, Zhou G, Hu Z, Weng S, Wan X, Long Y. Pentavalent iridium pyrochlore Cd2Ir2O7: a prototype material system for competing crystalline field and spin-orbit coupling. Phys Rev B. 2018;97(8):085103. https://doi.org/10.1103/PhysRevB.97.085103.

    Article  CAS  Google Scholar 

  25. Padilla WJ, Mandrus D, Basov DN. Searching for the Slater transition in the pyrochlore Cd2Os2O7 with infrared spectroscopy. Phys Rev B. 2002;66(3):035120. https://doi.org/10.1103/PhysRevB.66.035120.

    Article  CAS  Google Scholar 

  26. Ohgushi K, Gotou H, Yagi T, Ueda Y. High-pressure synthesis and magnetic properties of orthorhombic CuRh2O4. J Phys Soc Jpn. 2006;75(2):023707. https://doi.org/10.1143/JPSJ.75.023707.

    Article  CAS  Google Scholar 

  27. Wang X, Guo Y, Shi Y, Belik AA, Tsujimoto Y, Yi W, Sun Y, Shirako Y, Arai M, Akaogi M, Matsushita Y, Yamaura K. High-pressure synthesis, crystal structure, and electromagnetic properties of CdRh2O4: an analogous oxide of the postspinel mineral MgAl2O4. Inorg Chem. 2012;51(12):6868. https://doi.org/10.1021/ic300628m.

    Article  CAS  PubMed  Google Scholar 

  28. Teicher SML, Lamontagne LK, Schoop LM, Seshadri R. Fermi-level Dirac crossings in 4d and 5d cubic metal oxides: NaPd3O4 and NaPt3O4. Phys Rev B. 2019;99(19):195148. https://doi.org/10.1103/PhysRevB.99.195148.

    Article  CAS  Google Scholar 

  29. Lin JJ, Huang SM, Lin YH, Lee TC, Liu H, Zhang XX, Chen RS, Huang YS. Low temperature electrical transport properties of RuO2 and IrO2 single crystals. J Phys Condens Matter. 2004;16(45):8035. https://doi.org/10.1088/0953-8984/16/45/025.

    Article  CAS  Google Scholar 

  30. Hayakawa Y, Kohiki S, Arai M, Yoshikawa H, Fukushima S, Wagatsuma K, Oku M, Shoji F. Electronic structure and electrical properties of amorphous OsO2. Phys Rev B. 1999;59(17):11125. https://doi.org/10.1103/PhysRevB.59.11125.

    Article  CAS  Google Scholar 

  31. Shannon RD. Synthesis and properties of two new members of the rutile family RhO2 and PtO2. Solid State Commun. 1968;6(3):139. https://doi.org/10.1016/0038-1098(68)90019-7.

    Article  CAS  Google Scholar 

  32. Rogers DB, Shannon RD, Sleight AW, Gillson JL. Crystal chemistry of metal dioxides with rutile-related structures. Inorg Chem. 1969;8(4):841. https://doi.org/10.1021/ic50074a029.

    Article  CAS  Google Scholar 

  33. Leiva H, Kershaw R, Dwight K, Wold A. Magnetic and electrical properties of rhodium(III)oxide(III). Mater Res Bull. 1982;17(12):1539. https://doi.org/10.1016/0025-5408(82)90210-0.

    Article  CAS  Google Scholar 

  34. Zhuo S, Sohlberg K. Origin of stability of the high-temperature, low-pressure Rh2O3 III form of rhodium sesquioxide. J Solid State Chem. 2006;179(7):2126. https://doi.org/10.1016/j.jssc.2006.04.015.

    Article  CAS  Google Scholar 

  35. Yoshio Abe YA, Kiyohiko Kato KK, Midori Kawamura MK, Katsutaka Sasaki KS. Electrical properties of amorphous Rh oxide thin films prepared by reactive sputtering. Jpn J Appl Phys. 2000;39(1R):245. https://doi.org/10.1143/JJAP.39.245.

    Article  Google Scholar 

  36. Yoshio Abe YA, Midori Kawamura MK, Katsutaka Sasaki KS. Preparation of PtO and α-PtO2 thin films by reactive sputtering and their electrical properties. Jpn J Appl Phys. 1999;38(4R):2092. https://doi.org/10.1143/JJAP.38.2092.

    Article  Google Scholar 

  37. Okamoto H, Asô T. Formation of thin films of PdO and their electric properties. Jpn J Appl Phys. 1967;6(6):779. https://doi.org/10.1143/JJAP.6.779.

    Article  CAS  Google Scholar 

  38. Seriani N, ** Z, Pompe W, Ciacchi LC. Density functional theory study of platinum oxides: from infinite crystals to nanoscopic particles. Phys Rev B. 2007;76(15):155421. https://doi.org/10.1103/PhysRevB.76.155421.

    Article  CAS  Google Scholar 

  39. Nomiyama RK, Piotrowski MJ, Da Silva JLF. Bulk structures of PtO and PtO2 from density functional calculations. Phys Rev B. 2011;84(10):100101. https://doi.org/10.1103/PhysRevB.84.100101.

    Article  CAS  Google Scholar 

  40. Maeno Y, Nakatsuji S, Ikeda S. Metal–insulator transitions in layered ruthenates. Mater Sci Eng B. 1999;63(1):70. https://doi.org/10.1016/S0921-5107(99)00054-9.

    Article  Google Scholar 

  41. Nakatsuji S, Maeno Y. Synthesis and single-crystal growth of Ca2xSrxRuO4. J Solid State Chem. 2001;156(1):26. https://doi.org/10.1006/jssc.2000.8953.

    Article  CAS  Google Scholar 

  42. Nakatsuji S, Ikeda SI, Maeno Y. Ca2RuO4: new Mott insulators of layered ruthenate. J Phys Soc Jpn. 1997;66(7):1868. https://doi.org/10.1143/JPSJ.66.1868.

    Article  CAS  Google Scholar 

  43. Cao G, McCall S, Dobrosavljevic V, Alexander CS, Crow JE, Guertin RP. Ground-state instability of the Mott insulator Ca2RuO4: impact of slight La do** on the metal-insulator transition and magnetic ordering. Phys Rev B. 2000;61(8):R5053. https://doi.org/10.1103/PhysRevB.61.R5053.

    Article  CAS  Google Scholar 

  44. Alexander CS, Cao G, Dobrosavljevic V, McCall S, Crow JE, Lochner E, Guertin RP. Destruction of the Mott insulating ground state of Ca2RuO4 by a structural transition. Phys Rev B. 1999;60(12):R8422. https://doi.org/10.1103/PhysRevB.60.R8422.

    Article  CAS  Google Scholar 

  45. Qi TF, Korneta OB, Parkin S, Hu J, Cao G. Magnetic and orbital orders coupled to negative thermal expansion in Mott insulators Ca2Ru1xMxO4(M = Mn and Fe). Phys Rev B. 2012;85(16):165143. https://doi.org/10.1103/PhysRevB.85.165143.

    Article  CAS  Google Scholar 

  46. Okazaki R, Kobayashi K, Kumai R, Nakao H, Murakami Y, Nakamura F, Taniguchi H, Terasaki I. Current-induced giant lattice deformation in the Mott insulator Ca2RuO4. J Phys Soc Jpn. 2020;89(4):044710. https://doi.org/10.7566/JPSJ.89.044710.

    Article  Google Scholar 

  47. Okazaki R, Nishina Y, Yasui Y, Nakamura F, Suzuki T, Terasaki I. Current-induced gap suppression in the Mott insulator Ca2RuO4. J Phys Soc Jpn. 2013;82(10):103702. https://doi.org/10.7566/JPSJ.82.103702.

    Article  CAS  Google Scholar 

  48. Nakamura F, Sakaki M, Yamanaka Y, Tamaru S, Suzuki T, Maeno Y. Electric-field-induced metal maintained by current of the Mott insulator Ca2RuO4. Sci Rep. 2013;3(1):2536. https://doi.org/10.1038/srep02536.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sakaki M, Nakajima N, Nakamura F, Tezuka Y, Suzuki T. Electric-field-induced insulator–metal transition in Ca2RuO4 probed by X-ray absorption and emission spectroscopy. J Phys Soc Jpn. 2013;82(9):093707. https://doi.org/10.7566/JPSJ.82.093707.

    Article  CAS  Google Scholar 

  50. Tsubaki K, Tsurumaki-Fukuchi A, Katase T, Kamiya T, Arita M, Takahashi Y. Dynamics of an electrically driven phase transition in Ca2RuO4 thin films: nonequilibrium high-speed resistive switching in the absence of an abrupt thermal transition. Adv Electron Mater. 2023;9(6):2201303. https://doi.org/10.1002/aelm.202201303.

    Article  CAS  Google Scholar 

  51. Souri M, Gruenewald JH, Terzic J, Brill JW, Cao G, Seo SS. Investigations of metastable Ca2IrO4 epitaxial thin-films: systematic comparison with Sr2IrO4 and Ba2IrO4. Sci Rep. 2016;6(1):25967. https://doi.org/10.1038/srep25967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nakatsuji S, Maeno Y. Quasi-two-dimensional Mott transition system Ca2xSrxRuO4. Phys Rev Lett. 2000;84(12):2666. https://doi.org/10.1103/PhysRevLett.84.2666.

    Article  CAS  PubMed  Google Scholar 

  53. Dietl C, Sinha SK, Christiani G, Khaydukov Y, Keller T, Putzky D, Ibrahimkutty S, Wochner P, Logvenov G, van Aken PA, Kim BJ, Keimer B. Tailoring the electronic properties of Ca2RuO4 via epitaxial strain. Appl Phys Lett. 2018;112(3):031902. https://doi.org/10.1063/1.5007680.

    Article  CAS  Google Scholar 

  54. Nichols J, Korneta OB, Terzic J, Cao G, Brill JW, Seo SSA. Epitaxial Ba2IrO4 thin-films grown on SrTiO3 substrates by pulsed laser deposition. Appl Phys Lett. 2014;104(12):121913. https://doi.org/10.1063/1.4870049.

    Article  CAS  Google Scholar 

  55. Yuan SJ, Terzic J, Wang JC, Li L, Aswartham S, Song WH, Ye F, Cao G. Evolution of magnetism in single-crystal Ca2Ru1xIrxO4 (0 ≤ x ≤ 0.65). Phys Rev B. 2015;92(2):024425. https://doi.org/10.1103/PhysRevB.92.024425.

    Article  CAS  Google Scholar 

  56. Cao G, McCall S, Crow JE, Guertin RP. Observation of a metallic antiferromagnetic phase and metal to nonmetal transition in Ca3Ru2O7. Phys Rev Lett. 1997;78(9):1751. https://doi.org/10.1103/PhysRevLett.78.1751.

    Article  CAS  Google Scholar 

  57. Cao G, McCall SC, Crow JE, Guertin RP. Multiple magnetic phase transitions in single-crystal (Sr1xCax)3Ru2O7 for 0< x <1. Phys Rev B. 1997;56(9):5387. https://doi.org/10.1103/PhysRevB.56.5387.

    Article  CAS  Google Scholar 

  58. Fujiyama S, Ohashi K, Ohsumi H, Sugimoto K, Takayama T, Komesu T, Takata M, Arima T, Takagi H. Weak antiferromagnetism of Jeff = 1/2 band in bilayer iridate Sr3Ir2O7. Phys Rev B. 2012;86(17):174414. https://doi.org/10.1103/PhysRevB.86.174414.

    Article  CAS  Google Scholar 

  59. Bouchard RJ, Gillson JL. Electrical properties of CaRuO3 and SrRuO3 single crystals. Mater Res Bull. 1972;7(9):873. https://doi.org/10.1016/0025-5408(72)90075-X.

    Article  CAS  Google Scholar 

  60. Zhao JG, Yang LX, Yu Y, Li FY, Yu RC, Fang Z, Chen LC, ** CQ. High-pressure synthesis of orthorhombic SrIrO3 perovskite and its positive magnetoresistance. J Appl Phys. 2008;103(10):103706. https://doi.org/10.1063/1.2908879.

    Article  CAS  Google Scholar 

  61. Yamaura K, Shirako Y, Kojitani H, Arai M, Young DP, Akaogi M, Nakashima M, Katsumata T, Inaguma Y, Takayama-Muromachi E. Synthesis and magnetic and charge-transport properties of the correlated 4D post-perovskite CaRhO3. J Am Chem Soc. 2009;131(7):2722. https://doi.org/10.1021/ja8091906.

    Article  CAS  PubMed  Google Scholar 

  62. Shi YG, Guo YF, Yu S, Arai M, Belik AA, Sato A, Yamaura K, Takayama-Muromachi E, Tian HF, Yang HX, Li JQ, Varga T, Mitchell JF, Okamoto S. Continuous metal-insulator transition of the antiferromagnetic perovskite NaOsO3. Phys Rev B. 2009;80(16):161104. https://doi.org/10.1103/PhysRevB.80.161104.

    Article  CAS  Google Scholar 

  63. Ohgushi K, Yagi T, Gotou H, Kiuchi Y, Ueda Y. Metallization of quasi-two-dimensional Mott insulator CaIrO3 with S=1/2 spins. Phys B. 2009;404(19):3261. https://doi.org/10.1016/j.physb.2009.07.084.

    Article  CAS  Google Scholar 

  64. Jung JH, Fang Z, He JP, Kaneko Y, Okimoto Y, Tokura Y. Change of electronic structure in Ca2RuO4 induced by orbital ordering. Phys Rev Lett. 2003;91(5):056403. https://doi.org/10.1103/PhysRevLett.91.056403.

    Article  CAS  PubMed  Google Scholar 

  65. Cirillo C, Granata V, Avallone G, Fittipaldi R, Attanasio C, Avella A, Vecchione A. Emergence of a metallic metastable phase induced by electrical current in Ca2RuO4. Phys Rev B. 2019;100(23):235142. https://doi.org/10.1103/PhysRevB.100.235142.

    Article  CAS  Google Scholar 

  66. Upward MD, Kouwenhoven LP, Morpurgo AF, Kikugawa N, Mao ZQ, Maeno Y. Direct observation of the superconducting gap of Sr2RuO4. Phys Rev B. 2002;65(22):220512. https://doi.org/10.1103/PhysRevB.65.220512.

    Article  CAS  Google Scholar 

  67. Qi T. Magnetic and orbital orders coupled to negative thermal expansion in mott insulators, Ca2Ru1xMxO4 (M = 3d transition metal ion). Lexington: University of Kentucky; 2012. 3584237.

    Google Scholar 

  68. Callaghan A, Moeller CW, Ward RJIC. Magnetic interactions in ternary ruthenium oxides. Inorg Chem. 1966;5(9):1572. https://doi.org/10.1021/ic50043a023.

    Article  CAS  Google Scholar 

  69. Ohgushi K, Gotou H, Yagi T, Kiuchi Y, Sakai F, Ueda Y. Metal-insulator transition in Ca1xNaxIrO3 with post-perovskite structure. Phys Rev B. 2006;74(24):241104. https://doi.org/10.1103/PhysRevB.74.241104.

    Article  CAS  Google Scholar 

  70. Vecchio IL, Perucchi A, Di Pietro P, Limaj O, Schade U, Sun Y, Arai M, Yamaura K, Lupi S. Infrared evidence of a Slater metal-insulator transition in NaOsO3. Sci Rep. 2013;3(1):2990. https://doi.org/10.1038/srep02990.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Calder S, Garlea VO, McMorrow DF, Lumsden MD, Stone MB, Lang JC, Kim JW, Schlueter JA, Shi YG, Yamaura K, Sun YS, Tsujimoto Y, Christianson AD. Magnetically driven metal-insulator transition in NaOsO3. Phys Rev Lett. 2012;108(25):257209. https://doi.org/10.1103/PhysRevLett.108.257209.

    Article  CAS  PubMed  Google Scholar 

  72. Kanno R, Takeda Y, Yamamoto T, Kawamoto Y, Yamamoto O. Crystal structure and electrical properties of the pyrochlore ruthenate Bi2xYxRu2O7. J Solid State Chem. 1993;102(1):106. https://doi.org/10.1006/jssc.1993.1012.

    Article  CAS  Google Scholar 

  73. Yamamoto T, Kanno R, Takeda Y, Yamamoto O, Kawamoto Y, Takano M. Crystal structure and metal-semiconductor transition of the Bi2xLnxRu2O7 pyrochlores (Ln = Pr-Lu). J Solid State Chem. 1994;109(2):372. https://doi.org/10.1006/jssc.1994.1116.

    Article  CAS  Google Scholar 

  74. Masaki K, Imamaura T, Fukatsu M, Ken H. Crossover from metallic to semiconducting in Pb2xLnxRu2O7δ (Ln = Eu, Sm) compounds with pyrochlore structure. Mater Sci Forum. 2010;631–632:483. https://doi.org/10.4028/www.scientific.net/MSF.631-632.483.

    Article  CAS  Google Scholar 

  75. Chainani A, Yamamoto A, Matsunami M, Eguchi R, Taguchi M, Takata Y, Takagi H, Shin S, Nishino Y, Yabashi M, Tamasaku K, Ishikawa T. Quantifying covalency and metallicity in correlated compounds undergoing metal-insulator transitions. Phys Rev B. 2013;87(4):045108. https://doi.org/10.1103/PhysRevB.87.045108.

    Article  CAS  Google Scholar 

  76. Takeda T, Nagata M, Kobayashi H, Kanno R, Kawamoto Y, Takano M, Kamiyama T, Izumi F, Sleight AW. High-pressure synthesis, crystal structure, and metal–semiconductor transitions in the Tl2Ru2O7δ pyrochlore. J Solid State Chem. 1998;140(2):182. https://doi.org/10.1006/jssc.1998.7848.

    Article  CAS  Google Scholar 

  77. Jiao YY, Sun JP, Shahi P, Cui Q, Yu XH, Uwatoko Y, Wang BS, Alonso JA, Weng HM, Cheng JG. Effect of chemical and hydrostatic pressure on the cubic pyrochlore Cd2Ru2O7. Phys Rev B. 2018;98(7):075118. https://doi.org/10.1103/PhysRevB.98.075118.

    Article  CAS  Google Scholar 

  78. Matsuhira K, Wakeshima M, Hinatsu Y, Takagi S. Metal–insulator transitions in pyrochlore oxides Ln2Ir2O7. J Phys Soc Jpn. 2011;80(9):094701. https://doi.org/10.1143/JPSJ.80.094701.

    Article  CAS  Google Scholar 

  79. Mandrus D, Thompson JR, Gaal R, Forro L, Bryan JC, Chakoumakos BC, Woods LM, Sales BC, Fishman RS, Keppens V. Continuous metal-insulator transition in the pyrochlore Cd2Os2O7. Phys Rev B. 2001;63(19):195104. https://doi.org/10.1103/PhysRevB.63.195104.

    Article  CAS  Google Scholar 

  80. Zhao ZY, Calder S, Aczel AA, McGuire MA, Sales BC, Mandrus DG, Chen G, Trivedi N, Zhou HD, Yan JQ. Fragile singlet ground-state magnetism in the pyrochlore osmates R2Os2O7 (R = Y and Ho). Phys Rev B. 2016;93(13):134426. https://doi.org/10.1103/PhysRevB.93.134426.

    Article  CAS  Google Scholar 

  81. Kataoka K, Hirai D, Koda A, Kadono R, Honda T, Hiroi Z. Pyrochlore oxide Hg2Os2O7 on verge of metal–insulator boundary. J Phys Condens Matter. 2022;34(13):135602. https://doi.org/10.1088/1361-648X/ac4936.

    Article  CAS  Google Scholar 

  82. Yamamoto A, Sharma PA, Okamoto Y, Nakao A, Aruga Katori H, Niitaka S, Hashizume D, Takagi H. Metal-insulator transition in a pyrochlore-type ruthenium oxide, Hg2Ru2O7. J Phys Soc Jpn. 2007;76(4):043703. https://doi.org/10.1143/jpsj.76.043703.

    Article  Google Scholar 

  83. Lee S, Park JG, Adroja DT, Khomskii D, Streltsov S, McEwen KA, Sakai H, Yoshimura K, Anisimov VI, Mori D, Kanno R, Ibberson R. Spin gap in Tl2Ru2O7 and the possible formation of Haldane chains in three-dimensional crystals. Nat Mater. 2006;5(6):471. https://doi.org/10.1038/nmat1605.

    Article  CAS  PubMed  Google Scholar 

  84. Song J, Ko EK, Lee S, Mun J, Jeong JH, Lee JH, Kim WJ, Kim M, Li Y, Lee JH, Noh TW. Engineering structural homogeneity and magnetotransport in strained Nd2Ir2O7 films. APL Mater. 2023;11(6):061104. https://doi.org/10.1063/5.0153164.

    Article  CAS  Google Scholar 

  85. Hiroi Z, Yamaura J, Hirose T, Nagashima I, Okamoto Y. Lifshitz metal–insulator transition induced by the all-in/all-out magnetic order in the pyrochlore oxide Cd2Os2O7. APL Mater. 2015;3(4):041501. https://doi.org/10.1063/1.4907734.

    Article  CAS  Google Scholar 

  86. Hagino T, Seki Y, Nagata S. Metal - insulator transition in CuIr2S4: comparison with CuIr2Se4. Phys C. 1994;235–240:1303. https://doi.org/10.1016/0921-4534(94)91876-7.

    Article  Google Scholar 

  87. Kholil MI, Bhuiyan MTH. Physical properties of spinel-type superconductors CuRh2S4 and CuRh2Se4: a DFT study. Results Phys. 2019;12:73. https://doi.org/10.1016/j.rinp.2018.11.026.

    Article  Google Scholar 

  88. Zhang L, Ling L, Tan S, Pi L, Zhang Y. The effect of equivalent pressure and localized magnetism in Cu1xyAgxIr2S4 system. J Phys Condens Matter. 2008;20(25):255205. https://doi.org/10.1088/0953-8984/20/25/255205.

    Article  CAS  Google Scholar 

  89. Zhang L, Ling L, Tan S, Pi L, Liu N, Zhang Y. The great effect of magnetic Fe2+ ions on electromagnetic behavior in the Cu1xFexIr2S4 system. J Phys Condens Matter. 2009;21(2):026021. https://doi.org/10.1088/0953-8984/21/2/026021.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang L, Ling L, Qu Z, Zhang C, Tan S, Zhang Y. Enhancement of the Peierls-like phase transition in the Cu1xLixIr2S4 system. Europhys Lett. 2011;94(3):37003. https://doi.org/10.1209/0295-5075/94/37003.

    Article  CAS  Google Scholar 

  91. Nagata S, Matsumoto N, Kato Y, Furubayashi T, Matsumoto T, Sanchez JP, Vulliet P. Metal-insulator transition in the spinel-type CuIr2(S1xSex)4. Phys Rev B. 1998;58(11):6844. https://doi.org/10.1103/PhysRevB.58.6844.

    Article  CAS  Google Scholar 

  92. Matsumoto N, Endoh R, Nagata S, Furubayashi T, Matsumoto T. Metal-insulator transition and superconductivity in the spinel-type Cu(Ir1xRhx)2S4 system. Phys Rev B. 1999;60(8):5258. https://doi.org/10.1103/PhysRevB.60.5258.

    Article  CAS  Google Scholar 

  93. Ito M, Sonoda K, Nagata S. Temperature dependence of thermodynamic properties of spinel CuIr2S4. Solid State Commun. 2017;265:23. https://doi.org/10.1016/j.ssc.2017.07.021.

    Article  CAS  Google Scholar 

  94. Radaelli PG, Horibe Y, Gutmann MJ, Ishibashi H, Chen CH, Ibberson RM, Koyama Y, Hor Y-S, Kiryukhin V, Cheong S-W. Formation of isomorphic Ir3+ and Ir4+ octamers and spin dimerization in the spinel CuIr2S4. Nature. 2002;416(6877):155. https://doi.org/10.1038/416155a.

    Article  CAS  PubMed  Google Scholar 

  95. Oomi G, Kagayama T, Yoshida I, Hagino T, Nagata S. Effect of pressure on the metal-insulator transition temperature in thiospinel CuIr2S4. J Magn Magn Mater. 1995;140–144:157. https://doi.org/10.1016/0304-8853(94)01127-3.

    Article  Google Scholar 

  96. Endoh R, Matsumoto N, Chikazawa S, Nagata S, Furubayashi T, Matsumoto T. Metal-insulator transition in the spinel-type Cu1xNixIr2S4 system. Phys Rev B. 2001;64(7):075106. https://doi.org/10.1103/PhysRevB.64.075106.

    Article  CAS  Google Scholar 

  97. Cao G, Xu X, Jiao Z, Kitazawa H, Matsumoto T, Feng C. Suppression of the metal-insulator transition in the spinel Cu1xInxIr2S4 system. Phys Rev B. 2005;72(12):125128. https://doi.org/10.1103/PhysRevB.72.125128.

    Article  CAS  Google Scholar 

  98. Cao G, Kitazawa H, Matsumoto T, Feng C. Variation of the metal-insulator transition and formation of bipolarons by Cd do** in the thiospinel system Cu1xCdxIr2S4. Phys Rev B. 2004;69(4):045106. https://doi.org/10.1103/PhysRevB.69.045106.

    Article  CAS  Google Scholar 

  99. Zhang L, Ling L, Zhang R, Feng G, Zhang C, Pi L, Zhang Y. Effect of K-dopant on the electro-magnetic behaviors in Cu1xKxIr2S4. J Phys Soc Jpn. 2013;83(2):024602. https://doi.org/10.7566/JPSJ.83.024602.

    Article  CAS  Google Scholar 

  100. Endoh R, Awaka J, Nagata S. Ferromagnetism and the metal-insulator transition in the thiospinel Cu(Ir1xCrx)2S4. Phys Rev B. 2003;68(11):115106. https://doi.org/10.1103/PhysRevB.68.115106.

    Article  CAS  Google Scholar 

  101. Matsumoto N, Yamauchi Y, Awaka J, Kamei Y, Takano H, Nagata S. Metal–insulator transition in the spinel-type Cu(Ir1xPtx)2S4 system. Int J Inorg Mater. 2001;3(7):791. https://doi.org/10.1016/S1466-6049(01)00180-5.

    Article  CAS  Google Scholar 

  102. Hirai D, Takayama T, Hashizume D, Takagi H. Metal-insulator transition and superconductivity induced by Rh do** in the binary pnictides RuPn (Pn = P, As, Sb). Phys Rev B. 2012;85(14):140509. https://doi.org/10.1103/PhysRevB.85.140509.

    Article  CAS  Google Scholar 

  103. Chen RY, Shi YG, Zheng P, Wang L, Dong T, Wang NL. Optical study of phase transitions in single-crystalline RuP. Phys Rev B. 2015;91(12):125101. https://doi.org/10.1103/PhysRevB.91.125101.

    Article  CAS  Google Scholar 

  104. Kotegawa H, Takeda K, Kuwata Y, Hayashi J, Tou H, Sugawara H, Sakurai T, Ohta H, Harima H. Superlattice formation lifting degeneracy protected by nonsymmorphic symmetry through a metal-insulator transition in RuAs. Phys Rev Mater. 2018;2(5):055001. https://doi.org/10.1103/PhysRevMaterials.2.055001.

    Article  CAS  Google Scholar 

  105. Sekine C, Hoshi N, Shirotani I, Matsuhira K, Wakeshima M, Hinatsu Y. Magnetic and transport properties of Pr(Ru1xRhx)4P12. Phys B. 2006;378–380:211. https://doi.org/10.1016/j.physb.2006.01.079.

    Article  CAS  Google Scholar 

  106. Sekine C, Inoue M, Inaba T, Shirotani I. Magnetic and electrical properties of the filled skutterudite-type compound EuRu4P12. Phys B. 2000;281–282:308. https://doi.org/10.1016/S0921-4526(99)00824-8.

    Article  Google Scholar 

  107. Shirotani I, Uchiumi T, Ohno K, Sekine C, Nakazawa Y, Kanoda K, Todo S, Yagi T. Superconductivity of filled skutterudites LaRu4As12 and PrRu4As12. Phys Rev B. 1997;56(13):7866. https://doi.org/10.1103/PhysRevB.56.7866.

    Article  CAS  Google Scholar 

  108. Shirotani I, Ohno K, Sekine C, Yagi T, Kawakami T, Nakanishi T, Takahashi H, Tang J, Matsushita A, Matsumoto T. Electrical conductivity and superconductivity of LaT4As12 (T = Fe, Ru and Os) with skutterudite-type structure. Phys B. 2000;281–282:1021. https://doi.org/10.1016/S0921-4526(99)00834-0.

    Article  Google Scholar 

  109. Uchiumi T, Shirotani I, Sekine C, Todo S, Yagi T, Nakazawa Y, Kanoda K. Superconductivity of LaRu4X12 (X = P, As and Sb) with skutterudite structure. J Phys Chem Solids. 1999;60(5):689. https://doi.org/10.1016/S0022-3697(98)00292-3.

    Article  CAS  Google Scholar 

  110. Takeda N, Ishikawa M. Superconducting and magnetic properties of filled skutterudite compounds RERu4Sb12 (RE=La, Ce, Pr, Nd and Eu). J Phys Soc Jpn. 2000;69(3):868. https://doi.org/10.1143/JPSJ.69.868.

    Article  CAS  Google Scholar 

  111. Sekine C, Uchiumi T, Shirotani I, Yagi T. Metal-insulator transition in PrRu4P12 with skutterudite structure. Phys Rev Lett. 1997;79(17):3218. https://doi.org/10.1103/PhysRevLett.79.3218.

    Article  CAS  Google Scholar 

  112. Shirotani I, Hayashi J, Adachi T, Sekine C, Kawakami T, Nakanishi T, Takahashi H, Tang J, Matsushita A, Matsumoto T. Metal to insulator transition of filled skutterudite PrRu4P12 at low temperatures and high pressures. Phys B. 2002;322(3):408. https://doi.org/10.1016/S0921-4526(02)01293-0.

    Article  CAS  Google Scholar 

  113. Sekine C, Takusari M, Yagi T. Magnetic phase diagram of (Pr1xCex)Ru4P12. J Phys Soc Jpn. 2011;80(Suppl A):SA024. https://doi.org/10.1143/JPSJS.80SA.SA024.

    Article  Google Scholar 

  114. Miyake A, Holmes AT, Kagayama T, Shimizu K, Sekine C, Shirotani I, Kikuchi D, Sugawara H, Sato H. Electrical resistivity and AC-calorimetric measurements of PrRu4P12 under pressure. Phys B. 2008;403(5):1298. https://doi.org/10.1016/j.physb.2007.10.130.

    Article  CAS  Google Scholar 

  115. Baidya S, Sarkar S, Saha-Dasgupta T, Sarma DD. Interplay of localized and itinerant character of Ru ions: Tl2Ru2O7 versus Hg2Ru2O7. Phys Rev B. 2012;86(12):125117. https://doi.org/10.1103/PhysRevB.86.125117.

    Article  CAS  Google Scholar 

  116. Hepting M, Minola M, Frano A, Cristiani G, Logvenov G, Schierle E, Wu M, Bluschke M, Weschke E, Habermeier HU, Benckiser E, Le Tacon M, Keimer B. Tunable charge and spin order in PrNiO3 thin films and superlattices. Phys Rev Lett. 2014;113(22):227206. https://doi.org/10.1103/PhysRevLett.113.227206.

    Article  CAS  PubMed  Google Scholar 

  117. Chen J, Hu H, Wang J, Yajima T, Ge B, Ke X, Dong H, Jiang Y, Chen N. Overcoming synthetic metastabilities and revealing metal-to-insulator transition & thermistor bi-functionalities for d-band correlation perovskite nickelates. Mater Horiz. 2019;6(4):788. https://doi.org/10.1039/C9MH00008A.

    Article  CAS  Google Scholar 

  118. Pergament AL, Stefanovich GB, Kuldin NA, Velichko AA. On the problem of metal-insulator transitions in vanadium oxides. ISRN Condens Matter Phys. 2013;2013:960627. https://doi.org/10.1155/2013/960627.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2021YFA0718900), the National Natural Science Foundation of China (Nos. 62074014 and 52073090). J. Chen also acknowledges the support by **ao Mi scholar project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuo-Fu Chen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**a, YX., He, JG., Chen, NF. et al. Metal-to-insulator transition in platinum group compounds. Rare Met. 43, 3460–3474 (2024). https://doi.org/10.1007/s12598-023-02598-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02598-1

Keywords

Navigation