Log in

Improving the Power to Detect Indirect Effects in Mediation Analysis

  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

Causal mediation analysis seeks to determine whether an independent variable affects a response variable directly or whether it does so indirectly, by way of a mediator. The existing statistical tests to determine the existence of an indirect effect are overly conservative or have inflated type I error. In this article, we consider the principle of intersection–union tests and a method called the S-test. This method increases power but is not appropriate for statistical tests as small significance levels may cause the test to reject a null hypothesis, but larger significance levels will not reject the same hypothesis. We propose two new methods that provide increased power over existing methods while controlling type I error. We demonstrate through extensive simulation that the S-test and proposed methods control type I error and increase power over existing methods, and that while the proposed methods do not have the same problems, they provide similar power to the S-test. Finally, we provide an application to a large proteomic study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data are not publicly available due to privacy or ethical restrictions.

References

  1. Alwin DF, Hauser RM (1975) The decomposition of effects in path analysis. Am Soc Rev 40(1):37–47. https://doi.org/10.2307/2094445

    Article  Google Scholar 

  2. Aref H, Refaat S (2014) CRP evaluation in non-small cell lung cancer. Egypt J Chest Dis Tuberc 63(3):717–722. https://doi.org/10.1016/j.ejcdt.2014.02.003

    Article  Google Scholar 

  3. Barfield R, Shen J, Just AC, Vokonas PS, Schwartz J, Baccarelli AA, VanderWeele TJ, Lin X (2017) Testing for the indirect effect under the null for genome-wide mediation analyses. Genet Epidemiol 41(8):824–833. https://doi.org/10.1002/gepi.22084

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bellavia A, James-Todd T, Williams PL (2019) Approaches for incorporating environmental mixtures as mediators in mediation analysis. Environ Int 123:368–374. https://doi.org/10.1016/j.envint.2018.12.024

    Article  PubMed  Google Scholar 

  5. Berger RL (1997) Likelihood ratio tests and intersection-union tests. In: Panchapakesan S, Balakrishnan N (eds) Advances in statistical decision theory and applications. Birkhäuser, Boston, pp 225–237. https://doi.org/10.1007/978-1-4612-2308-5_15

    Chapter  Google Scholar 

  6. Biesanz JC, Falk CF, Savalei V (2010) Assessing mediational models: testing and interval estimation for indirect effects. Multivar Behav Res 45(4):661–701. https://doi.org/10.1080/00273171.2010.498292

    Article  Google Scholar 

  7. Cardenas A, Lutz SM, Everson TM, Perron P, Bouchard L, Hivert MF (2019) Mediation by placental DNA methylation of the association of prenatal maternal smoking and birth weight. Am J Epidemiol 188(11):1878–1886. https://doi.org/10.1093/aje/kwz184

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cho SH, Huang YT (2019) Mediation analysis with causally ordered mediators using Cox proportional hazards model. Stat Med 38(9):1566–1581. https://doi.org/10.1002/sim.8058

    Article  MathSciNet  PubMed  Google Scholar 

  9. Cohen J, Cohen P (1983) Applied multiple regression/correlation analysis for the behavioral sciences. Taylor & Francis Group, New York

    Google Scholar 

  10. Couper D, LaVange LM, Han M, Barr RG, Bleecker E, Hoffman EA, Kanner R, Kleerup E, Martinez FJ, Woodruff PG (2014) Design of the subpopulations and intermediate outcomes in COPD study (SPIROMICS). Thorax 69(5):492–495. https://doi.org/10.1136/thoraxjnl-2013-203897

    Article  Google Scholar 

  11. Dai JY, Stanford JL, LeBlanc M (2020) A multiple-testing procedure for high-dimensional mediation hypotheses. J Am Stat Assoc. https://doi.org/10.1080/01621459.2020.1765785

    Article  PubMed  PubMed Central  Google Scholar 

  12. Derkach A, Moore S, Boca S, Sampson J (2020) Group testing in mediation analysis. Stat Med. https://doi.org/10.1002/sim.8546

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  13. Derkach A, Pfeiffer R, Chen T, Sampson J (2019) High dimensional mediation analysis with latent variables. Biometrics. https://doi.org/10.1111/biom.13053

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  14. Foreman MG, Kong X, DeMeo DL, Pillai SG, Hersh CP, Bakke P, Gulsvik A, Lomas DA, Litonjua AA, Shapiro SD, Tal-Singer R, Silverman EK (2011) Polymorphisms in surfactant protein-D are associated with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 44(3):316–322. https://doi.org/10.1165/rcmb.2009-0360OC

    Article  CAS  PubMed  Google Scholar 

  15. Huang YT (2018) Joint significance tests for mediation effects of socioeconomic adversity on adiposity via epigenetics. Ann Appl Stat 12(3):1535–1557. https://doi.org/10.1214/17-AOAS1120

    Article  MathSciNet  Google Scholar 

  16. Huang YT (2019) Genome-wide analyses of sparse mediation effects under composite null hypotheses. Ann Appl Stat 13:60–84

    Article  MathSciNet  Google Scholar 

  17. Huang YT, Pan WC (2016) Hypothesis test of mediation effect in causal mediation model with high-dimensional continuous mediators. Biometrics 72(2):402–413. https://doi.org/10.1111/biom.12421

    Article  MathSciNet  PubMed  Google Scholar 

  18. Huang YT, VanderWeele TJ, Lin X (2014) Joint analysis of SNP and gene expression data in genetic association studies of complex diseases. Ann Appl Stat 8(1):1–24. https://doi.org/10.1214/13-AOAS690.JOINT

    Article  MathSciNet  Google Scholar 

  19. Hutton J, Fatima T, Major TJ, Topless R, Stamp LK, Merriman TR, Dalbeth N (2018) Mediation analysis to understand genetic relationships between habitual coffee intake and gout. Arth Res Ther 20(1):135. https://doi.org/10.1186/s13075-018-1629-5

    Article  CAS  Google Scholar 

  20. Imai K, Keele L, Yamamoto T (2010) Identification, inference and sensitivity analysis for causal mediation effects. Stat Sci 25(1):51–71. https://doi.org/10.1214/10-STS321. ar**v:1011.1079

    Article  MathSciNet  Google Scholar 

  21. Kisbu-Sakarya Y, MacKinnon DP, Miočević M (2014) The distribution of the product explains normal theory mediation confidence interval estimation. Multivar Behav Res 49(3):261–268. https://doi.org/10.1080/00273171.2014.903162

    Article  Google Scholar 

  22. Lin DY, Zeng D, Couper D (2020) A general framework for integrative analysis of incomplete multiomics data. Genet Epidemiol 44(7):646–664. https://doi.org/10.1002/gepi.22328

    Article  PubMed  PubMed Central  Google Scholar 

  23. MacKinnon DP, Fairchild AJ, Fritz MS (2007) Mediation analysis. Annu Rev Psychol 58:593–614. https://doi.org/10.1146/annurev.psych.58.110405.085542

    Article  PubMed  PubMed Central  Google Scholar 

  24. MacKinnon DP, Lockwood CM, Hoffman JM, West SG, Sheets V (2002) A comparison of methods to test mediation and other intervening variable effects. Psychol Methods 7(1):83–104. https://doi.org/10.1037//1082-989X.7.1.83. ar**v:0412114v1 [ar**v:cs]

    Article  PubMed  PubMed Central  Google Scholar 

  25. MacKinnon DP, Lockwood CM, Williams J (2004) Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivar Behav Res 39(1):99–128. https://doi.org/10.1207/s15327906mbr3901_4

    Article  Google Scholar 

  26. Nandy D, Sharma N, Senapati S (2019) Systematic review and meta-analysis confirms significant contribution of surfactant protein D in chronic obstructive pulmonary disease. Front Genet 10:1–7. https://doi.org/10.3389/fgene.2019.00339

    Article  CAS  Google Scholar 

  27. ...Obeidat M, Li X, Burgess S, Zhou G, Fishbane N, Hansel NN, Bossé Y, Joubert P, Hao K, Nickle DC, van den Berge M, Timens W, Cho MH, Hobbs BD, de Jong K, Boezen M, Hung RJ, Rafaels N, Mathias R, Ruczinski I, Beaty TH, Barnes KC, Paré PD, Sin DD (2017) Surfactant protein D is a causal risk factor for COPD: results of Mendelian randomisation. Eur Respir J 50(5):1–11. https://doi.org/10.1183/13993003.00657-2017

    Article  CAS  Google Scholar 

  28. ...O’Neal WK, Anderson W, Basta PV, Carretta EE, Doerschuk CM, Barr RG, Bleecker ER, Christenson SA, Curtis JL, Han MK, O’Neal WK, Anderson W, Basta PV, Carretta EE, Doerschuk CM, Barr RG, Bleecker ER, Christenson SA, Curtis JL, Han MK, Hansel NN, Kanner RE, Kleerup EC, Martinez FJ, Miller BE, Peters SP, Rennard SI, Scholand MB, Tal-Singer R, Woodruff PG, Couper DJ, Davis SM (2014) Comparison of serum, EDTA plasma and P100 plasma for luminex-based biomarker multiplex assays in patients with chronic obstructive pulmonary disease in the SPIROMICS study. J Transl Med 12(1):1–9. https://doi.org/10.1186/1479-5876-12-9

    Article  CAS  Google Scholar 

  29. ...Raulerson CK, Ko A, Kidd JC, Currin KW, Brotman SM, Cannon ME, Wu Y, Spracklen CN, Jackson AU, Stringham HM, Welch RP, Fuchsberger C, Locke AE, Narisu N, Lusis AJ, Civelek M, Furey TS, Kuusisto J, Collins FS, Boehnke M, Scott LJ, Lin DY, Love MI, Laakso M, Pajukanta P, Mohlke KL (2019) Adipose tissue gene expression associations reveal hundreds of candidate genes for cardiometabolic traits. Am J Hum Genet 105(4):773–787. https://doi.org/10.1016/j.ajhg.2019.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Richiardi L, Bellocco R, Zugna D (2013) Mediation analysis in epidemiology: methods, interpretation and bias. Int J Epidemiol 42(5):1511–1519. https://doi.org/10.1093/ije/dyt127

    Article  PubMed  Google Scholar 

  31. Sobel ME (1982) Asymptotic confidence intervals for indirect effects in structural equation models. Soc Methodol 13:290–312. https://doi.org/10.2307/270723

    Article  Google Scholar 

  32. Sun, W., K. Kechris, S. Jacobson, M.B. Drummond, G.A. Hawkins, J. Yang, T.h. Chen, P.M. Quibrera, W. Anderson, R.G. Barr, P.V. Basta, E.R. Bleecker, T. Beaty, R. Casaburi, P. Castaldi, M.H. Cho, A. Comellas, J.D. Crapo, G. Criner, D. Demeo, S.A. Christenson, D.J. Couper, J.L. Curtis, C.M. Doerschuk, C.M. Freeman, N.A. Gouskova, M.K. Han, N.A. Hanania, N.N. Hansel, C.P. Hersh, E.A. Hoffman, R.J. Kaner, R.E. Kanner, E.C. Kleerup, S. Lutz, F.J. Martinez, D.A. Meyers, S.P. Peters, E.A. Regan, S.I. Rennard, M.B. Scholand, E.K. Silverman, P.G. Woodruff, W.K. O’Neal, R.P. Bowler, S.R. Group, and C.I. Investigators (2016) Common genetic polymorphisms influence blood biomarker measurements in COPD. PLOS Genet 12(8):e1006011. https://doi.org/10.1371/journal.pgen.1006011

    Article  CAS  Google Scholar 

  33. Vanderweele TJ (2011) Controlled Direct and Mediated Effects: Definition, Identification and Bounds. Scand J Stat 38(3):551–563. https://doi.org/10.1111/j.1467-9469.2010.00722.x

    Article  MathSciNet  Google Scholar 

  34. Vanderweele TJ, Vansteelandt S (2009) Conceptual issues concerning mediation, interventions and composition. Stat Interface 2(4):457–468. https://doi.org/10.4310/SII.2009.v2.n4.a7

    Article  MathSciNet  Google Scholar 

  35. VanderWeele TJ, Vansteelandt S (2013) Mediation analysis with multiple mediators. Epidemiol Methods 2(1):95–115. https://doi.org/10.1515/em-2012-0010.ar**v:NIHMS150003

  36. Wang K (2018) Understanding power anomalies in mediation analysis. Psychometrika 83(2):387–406. https://doi.org/10.1007/s11336-017-9598-1

    Article  MathSciNet  PubMed  Google Scholar 

  37. Zhang W, Fan J, Chen Q, Lei C, Qiao B, Liu Q (2018) SPP1 and AGER as potential prognostic biomarkers for lung adenocarcinoma. Oncol Lett 15(5):7028–7036. https://doi.org/10.3892/ol.2018.8235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhong W, Darville T, Zheng X, Fine J, Li Y (2020) Biometrics, Generalized multi-SNP mediation intersection-union test. https://doi.org/10.1111/biom.13418

  39. Zhong W, Spracklen CN, Mohlke KL, Zheng X, Fine J, Li Y (2019) Multi-SNP mediation intersection-union test. Bioinformatics 35(22):4724–4729. https://doi.org/10.1093/bioinformatics/btz285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Chris Shendhal for processing the SPIROMICS data.

Funding

Research reported in this publication was supported by the National Institutes Of Health under Award Number R01HG009974.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Kidd.

Ethics declarations

Competing interests

The authors declare no potential competing of interests.

Appendices

Appendix A

Potential Inflation of the Type I Error for the PS-Test

Due to the symmetric nature of the rejection region, the potential inflation of the Type I error for the PS-test is the same when \(\gamma = 0\) and \(\beta \ne 0\) versus when \(\beta = 0\) and \(\gamma \ne 0\). Thus, we assume that \(\gamma = 0\) and \(\beta \ne 0\), in which case \(U_{\gamma }\) is standard uniform. The probability that \((U_{\beta }, U_{\gamma })\) lies within the rejection region depends on the value of \(\alpha\) (just like the original S-test) and on the value of \(U_{\beta }\) (unlike the original S-test). Let \(g(u_{\beta })\) denote the probability that \(H_0\) is rejected for the chosen \(\alpha\) when \(U_{\beta }=u_{\beta }\), and let \(f_{U_{\beta }}(u_\beta )\) denote the density function of \(U_{\beta }\). The probability of making a type I error at the significance level \(\alpha\) equals \(\int _0^1 g(x) f_{U_{\beta }}(x) dx\). We can determine the noncentrality parameter of \(T_{\beta }\) that causes the largest type I error for any value of \(\alpha\) and then determine the maximum inflation of the type I error over all possible values of \(\alpha\).

We use numerical integration to calculate the type I error. We consider both small-sample and asymptotic scenarios, using a noncentral t-distribution with five degrees of freedom and a normal distribution with mean equal to the noncentrality parameter and unit variance. In the small-sample scenario, the maximum possible type I error rate occurs when \(\alpha \approx 0.002\) and is approximately 1.0001 times \(\alpha\). In the asymptotic case, the maximum type I error occurs when \(\alpha \approx 0.028\) and is approximately 1.0084 times \(\alpha\). In each case, the increase in the type I error for the PS-test is less than 1% of \(\alpha\), and more common choices of \(\alpha\) have even lower inflation of the type I error.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kidd, J., Lin, DY. Improving the Power to Detect Indirect Effects in Mediation Analysis. Stat Biosci 16, 129–141 (2024). https://doi.org/10.1007/s12561-023-09386-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12561-023-09386-6

Keywords

Navigation