Log in

Existence Results for Nonlinear Hilfer Pantograph Fractional Integrodifferential Equations

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The main aim of this paper is to study the existence and uniqueness solutions for the nonlinear Hilfer pantograph fractional differential equations. This paper initiates with the persistence of the nonlinear Hilfer pantograph fractional differential equation. Also, it extended to the fractional integrodifferential equation. The premises are attained by using the fixed-point theorem. Ultimately, numerical examples are furnished to demonstrate our outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

No data were used to support this study.

References

  1. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York (1993)

    Google Scholar 

  2. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V, Amsterdam (2006)

    Google Scholar 

  3. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Amsterdam (1987)

    Google Scholar 

  4. Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, New York (2011)

    Google Scholar 

  5. Diethelm, K.: The Analysis of Fractional Differential equations. Lecture Notes. Math, Springer, New York (2010)

    Book  Google Scholar 

  6. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent History of Fractional Calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 140–1153 (2011)

    Article  MathSciNet  Google Scholar 

  7. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  Google Scholar 

  8. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    Google Scholar 

  9. Baleanu, D., Shiri, B.: Generalized fractional differential equations for past dynamic. AIMS Math. 7, 14394–14418 (2022)

    Article  MathSciNet  Google Scholar 

  10. Gu, C.Y., Wu, G.C., Shiri, B.: An inverse problem approach to determine possible memory length of fractional differential equations. Frac. Calc. Appl. Anal. 24, 1919–1936 (2021)

    Article  MathSciNet  Google Scholar 

  11. Shiri, B., Wu, G.C., Baleanu, D.: Terminal value problems for the nonlinear systems of fractional differential equations. Appl. Numer. Math. 170, 162–178 (2021)

    Article  MathSciNet  Google Scholar 

  12. Baleanu, D., Shiri, B.: Nonlinear higher order fractional terminal value problems. AIMS Math. 7, 7489–7506 (2022)

    Article  MathSciNet  Google Scholar 

  13. Yang, G., Shiri, B., Kong, H., Wu, G.C.: Intermediate value problems for fractional differential equations. Comput. Appl. Math. 40, 1–20 (2021)

    Article  MathSciNet  Google Scholar 

  14. Shiri, B., Baleanu, D.: A general fractional pollution model for lakes. Commun. Appl. Math. Comput. 4, 1105–1130 (2022)

    Article  MathSciNet  Google Scholar 

  15. Radhakrishnan, B., Sathya, T.: Controllability and periodicity results for neutral impulsive evolution system in Banach spaces. Dynam. Cont. Discrete Impulsive Systems. Series A: Math. Anal 26, 261–277 (2019)

    MathSciNet  Google Scholar 

  16. Radhakrishnan, B., Sathya, T.: A study on controllability and periodicity solutions for nonlinear neutral integrodifferential system. Konuralp J. Math. 10, 171–181 (2022)

    MathSciNet  Google Scholar 

  17. Radhakrishnan, B., Sathya, T.: Controllability of nonlinear Hilfer fractional Langevin dynamical system. Num. Methods Partial Diff. Equ. 39, 995–1007 (2022)

    Article  MathSciNet  Google Scholar 

  18. Radhakrishnan, B., Sathya, T.: Controllability of Hilfer Fractional Langevin Dynamical System with Impulse in an Abstract Weighted Space. J. Optimization Theory. Appli. 26, 261–277 (2019)

    Google Scholar 

  19. Hilfer, R.: Applications of fractional calculus in physics. World Scientific, Singapore (1999)

    Google Scholar 

  20. Kou, C., Liu, J., Ye, Y.: Existence and uniqueness solutions for the Cauchy-type problems of fractional differential equation. Discret. Dyn. Nature Soc. 2010, 1–15 (2010)

    MathSciNet  Google Scholar 

  21. Furati, K.M., Kassim, M.D., Tatar, N.E.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 64, 1616–1626 (2012)

    Article  MathSciNet  Google Scholar 

  22. Gu, H., Trujillo, J.J.: Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257, 344–354 (2015)

    MathSciNet  Google Scholar 

  23. Yang, M., Wang, Q.: Existence of mild solutions for a class of Hilfer fractional evolution equations with non-local conditions. Fract. Calc. Appl. Anal. 20, 679–705 (2017)

    Article  MathSciNet  Google Scholar 

  24. Kavitha, K., Vijayakumar, V., Udhayakumar, R., Ravichandran, C.: Results on controllability of Hilfer fractional differential equations with infinite delay via measures of non-compactness. Asian J. Control 24, 1405–1415 (2022)

    Article  Google Scholar 

  25. Kavitha, K., Vijayakumar, V., Udhayakumar, R., Sakthivel, N., Nisar, Kottakkaran Sooppy: A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. Math. Methods Appl. Sci. 44, 4428–4447 (2020)

    Article  MathSciNet  Google Scholar 

  26. Kamocki, R.: A new representation formula for the Hilfer fractional derivative and its application. J. Comput. Appl. Math. 14, 1–14 (2016)

    MathSciNet  Google Scholar 

  27. Thabet, S.T.M., Ahma, B., Agarwal, R.P.: On abstract Hilfer fractional integrodifferential equations with boundary conditions. Arab J. Math. Sci. 26, 107–125 (2019)

    Article  MathSciNet  Google Scholar 

  28. Abbas, S., Benchohra, M., Lazreg, J.E., Zhou, Y.: A survey on Hadamard and Hilfer fractional differential equations: analysis stability. Chaos, Solitons Fractals 102, 47–71 (2017)

    Article  MathSciNet  Google Scholar 

  29. Wang, J.R., Zhang, Y.: Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl. Math. Comput. 266, 850–859 (2015)

    MathSciNet  Google Scholar 

  30. Ockendon, J.R., Taylor, A.B.: The dynamics of a current collection system for an electric locomotive. Proc. Royal Soc. London Ser. A 322, 447–468 (1971)

    Google Scholar 

  31. Iserles, A.: On pantograph integrodifferential Equations. J. Int. Equ. Appl. 6, 213–237 (1994)

    MathSciNet  Google Scholar 

  32. Patade, J., Bhalekar, J.: Analytical solution of pantograph equation with incommensurate delay. Phys. Sci. Rev. 2, 1–17 (2017)

    Google Scholar 

  33. Yuzbas, S., Sezer, M.: An exponential approximation for solutions of generalized pantograph-delay differential equations. Appl. Math. Modeling 37, 9160–9173 (2013)

    Article  MathSciNet  Google Scholar 

  34. Balachandran, K., Kiruthika, S.: Existence of solutions of nonlinear fractional pantograph equations. Acta Mathematica Scientia 33, 712–720 (2013)

    Article  MathSciNet  Google Scholar 

  35. Hashemi, M.S., Atangana, A., Hajikhah, S.: Solving fractional pantograph delay equations by an effective computational method. Math. Comput. Simul. 177, 295–305 (2020)

    Article  MathSciNet  Google Scholar 

  36. Ahmad, I., Nieto, J.J., Rahman, G.U., Kamalshah: Existence and stability for fractional order pantograph equation with non local conditions. Electron. J. Differ. Equ. 132, 1–16 (2020)

    Google Scholar 

  37. Almalahi, M.A., Panchal, S.K., Jarad, F.: Results on implicit fractional pantograph equations with Mittag-Leffler Kernel and non-local condition. J. Math. 1, 1–19 (2022)

    Article  Google Scholar 

  38. Bohr, H.: Zur theorie der fastperiodischen funktionen. Acta Math. 45, 29–127 (1925)

    Article  MathSciNet  Google Scholar 

  39. Zaidman, S.: Almost-periodic Functions in Abstract Spaces, Research Notes in Mathematics, vol. 126. Pitman Publishing, London (1985)

    Google Scholar 

  40. He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 257–262 (1999)

    Article  MathSciNet  Google Scholar 

  41. Pratibhamoy, D., Subrata, R., Higinio, R.: Homotopy perturbation method for solving Caputo-type fractional order Volterra-Fredholm integrodifferential equations. Comput. Math. Methods 1, 1–9 (2019)

    Google Scholar 

  42. Soleymani, K.V., Sedighi, H.K.: On the numerical solution of generalized pantograph equation. World Appl. Sci. J. 13, 2531–2535 (2011)

    Google Scholar 

  43. Guerekata, G.M.: Almost automorphic functions and almost periodic functions in abstract spaces. Springer Science and Business Media, New York, London, Moscow (2001)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the referees for the improvement of the paper. The authors W.Shatanawi, and T. Abdeljawad would like to thank Prince Sultan University for the support through TAS research lab.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Radhakrishnan or T. Abdeljawad.

Ethics declarations

Conflict of interest

The authors declares that there are no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 Solution Representation for Problem (3.1)

Consider the nonlinear Hilfer pantograph fractional differential equation (3.1).

$$\begin{aligned} D_{0^+}^{\alpha , \beta } w(t)= & {} {\mathscr {F}}(t,w(t), w(\lambda t)),\\ \text{ taking } {\mathbb {I}}_{0^+}^{\alpha } \text {on both sides}\\ {\mathbb {I}}_{0^+}^{\alpha }D_{0^+}^{\alpha , \beta } w(t)= & {} {\mathbb {I}}_{0^+}^{\alpha } {\mathscr {F}}(t,w(t), w(\lambda t)\\ {\mathbb {I}}_{0^+}^{\gamma }D^{\gamma }w(t)= & {} {\mathbb {I}}_{0^+}^{\alpha }{\mathscr {F}}(t,w(t), w(\lambda t)) \\ w(t)-\frac{{\mathbb {I}}_{0^+}^{1-\gamma }w(0) }{\Gamma (\gamma )}t^{\gamma -1}= & {} {\mathbb {I}}_{0^+}^{\alpha }{\mathscr {F}}(t,w(t), w(\lambda t))\\ w(t)= & {} \frac{w_{0}t^{\gamma -1}}{\Gamma (\gamma )}+\frac{1}{\Gamma (\alpha )}\int _{0}^{t}(t-s)^{\alpha -1}{\mathscr {F}}(s,w(s), w(\lambda s)) ds. \end{aligned}$$

Hence w(t) is a solution of problem (3.1).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhakrishnan, B., Sathya, T., Alqudah, M.A. et al. Existence Results for Nonlinear Hilfer Pantograph Fractional Integrodifferential Equations. Qual. Theory Dyn. Syst. 23, 237 (2024). https://doi.org/10.1007/s12346-024-01069-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-01069-x

Keywords

Mathematics Subject Classification

Navigation