Log in

High-performance Bi2S3/ZnO photoanode enabled by interfacial engineering with oxyanion for efficient photoelectrochemical water oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In the present contribution, we demonstrate that the sluggish kinetics of oxygen evolution reaction (OER) over the bismuth sulfide (Bi2S3) photoanode, which severely restricts its photoelectrochemical activity, is markedly accelerated by employing a sulfate-containing electrolyte. First-principle calculation points to the spontaneous adsorption of sulfate (\({\rm{S}}{{\rm{O}}_4}^{2 - }\)) on Bi2S3 and its capacity of stabilizing the OER intermediates through hydrogen bonding, which is further reinforced by increasing the local density of states near the Fermi level of Bi2S3. Meanwhile, the electron transfer is also promoted to synergistically render the rate-determining step (from O* to OOH*) of OER over Bi2S3 kinetically facile. Last but not least, benefitting from such enhanced OER activity and efficient charge separation resulted from depositing Bi2S3 on the zinc oxide nanorods (ZnO NRs), forming a core–shell heterojunction, its photocurrent density achieves 8.61 mA·cm−2 at 1.23 VRHE, far surpassing those reported for additional Bi2S3-based and several state-of-the-art photoanodes in the literature and further exceeding their theoretical limit. The great promise of the Bi2S3/ZnO NRs is in view of such outperformance, the superior Faradaic yield of oxygen of more than ∼ 80% and the outstanding half-cell applied bias photon-to-current efficiency of ∼ 1% well corroborated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fabbri, E.; Schmidt, T. J. Oxygen evolution reaction-the enigma in water electrolysis. ACS Catal. 2018, 8, 9765–9774.

    Article  CAS  Google Scholar 

  2. Dong, G. J.; Yan, L. L.; Bi, Y. P. Advanced oxygen evolution reaction catalysts for solar-driven photoelectrochemical water splitting. J. Mater. Chem. A 2023, 11, 3888–3903.

    Article  CAS  Google Scholar 

  3. Zhou, L. Q.; Ling, C.; Zhou, H.; Wang, X.; Liao, J.; Reddy, G. K.; Deng, L. Z.; Peck, T. C.; Zhang, R. G.; Whittingham, M. S. et al. A high-performance oxygen evolution catalyst in neutral-pH for sunlight-driven CO2 reduction. Nat. Commun. 2019, 10, 4081.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Morikawa, T.; Sato, S.; Sekizawa, K.; Suzuki, T. M.; Arai, T. Solar-driven CO2 reduction using a semiconductor/molecule hybrid photosystem: From photocatalysts to a monolithic artificial leaf. Acc. Chem. Res. 2022, 55, 933–943.

    Article  CAS  PubMed  Google Scholar 

  5. Huang, H.; Periyanagounder, D.; Chen, C. L.; Li, Z. X.; Lei, Q.; Han, Y.; Huang, K. W.; He, J. H. Artificial leaf for solar-driven ammonia conversion at milligram-scale using triple junction III–V photoelectrode. Adv. Sci. 2023, 10, 2205808.

    Article  CAS  Google Scholar 

  6. Liu, X. R.; Yuan, Y. F.; Liu, J.; Liu, B.; Chen, X.; Ding, J.; Han, X. P.; Deng, Y. D.; Zhong, C.; Hu, W. B. Utilizing solar energy to improve the oxygen evolution reaction kinetics in zinc-air battery. Nat. Commun. 2019, 10, 4767.

    Article  PubMed  PubMed Central  Google Scholar 

  7. You, J.; Zhang, B. Q.; Wang, X. L.; Zhang, H. R.; Huang, L. L.; He, L. H.; Li, N. X.; Chang, Y. C.; Lin, S. W. Dual photoelectrodes activate oxygen evolution and oxygen reduction reactions enabling a high-performance Zn-air battery and an efficient solar energy storage. Chem. Eng. J. 2023, 470, 144095.

    Article  CAS  Google Scholar 

  8. Pihosh, Y.; Minegishi, T.; Nandal, V.; Higashi, T.; Katayama, M.; Yamada, T.; Sasaki, Y.; Seki, K.; Suzuki, Y.; Nakabayashi, M. et al. Ta3N5-nanorods enabling highly efficient water oxidation via advantageous light harvesting and charge collection. Energy Environ. Sci. 2020, 13, 1519–1530.

    Article  CAS  Google Scholar 

  9. Meng, L. X.; He, J. L.; Zhou, X. L.; Deng, K. M.; Xu, W. W.; Kidkhunthod, P.; Long, R.; Tang, Y. B.; Li, L. Atomic layer deposition triggered Fe-In-S cluster and gradient energy band in ZnInS photoanode for improved oxygen evolution reaction. Nat. Commun. 2021, 12, 5247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, Z. Z.; Huang, X. J.; Zhang, B. B.; Bi, Y. P. High-performance and stable BiVO4 photoanodes for solar water splitting via phosphorus-oxygen bonded FeNi catalysts. Energy Environ. Sci. 2022, 15, 2867–2873.

    Article  CAS  Google Scholar 

  11. Wang, L.; Lian, W. T.; Liu, B.; Lv, H. F.; Zhang, Y.; Wu, X. J.; Wang, T.; Gong, J. L.; Chen, T.; Xu, H. X. A transparent, high-performance, and stable Sb2S3 photoanode enabled by heterojunction engineering with conjugated polycarbazole frameworks for unbiased photoelectrochemical overall water splitting devices. Adv. Mater. 2022, 34, 2200723.

    Article  CAS  Google Scholar 

  12. Feng, C. C.; Fu, S. R.; Wang, W.; Zhang, Y. J.; Bi, Y. P. High-crystalline and high-aspect-ratio hematite nanotube photoanode for efficient solar water splitting. Appl. Catal. B Environ. 2019, 257, 117900.

    Article  CAS  Google Scholar 

  13. Wang, H. M.; **a, Y. G.; Li, H. P.; Wang, X.; Yu, Y.; Jiao, X. L.; Chen, D. R. Highly active deficient ternary sulfide photoanode for photoelectrochemical water splitting. Nat. Commun. 2020, 11, 3078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nishimae, S.; Mishima, Y.; Nishiyama, H.; Sasaki, Y.; Nakabayashi, M.; Inoue, Y.; Katayama, M.; Domen, K. Fabrication of BaTaO2N thin films by interfacial reactions of BaCO3/Ta3N5 layers on a ta substrate and resulting high photoanode efficiencies during water splitting. Sol. RRL 2020, 4, 1900542.

    Article  CAS  Google Scholar 

  15. Wang, S. C.; He, T. W.; Yun, J. H.; Hu, Y. X.; **ao, M.; Du, A. J.; Wang, L. Z. New iron-cobalt oxide catalysts promoting BiVO4 films for photoelectrochemical water splitting. Adv. Funct. Mater. 2018, 28, 1802685.

    Article  Google Scholar 

  16. Zhang, B. B.; Wang, L.; Zhang, Y. J.; Ding, Y.; Bi, Y. P. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew. Chem., Int. Ed. 2018, 57, 2248–2252.

    Article  CAS  Google Scholar 

  17. Meng, Q. J.; Zhang, B. B.; Fan, L. Z.; Liu, H. D.; Valvo, M.; Edström, K.; Cuartero, M.; de Marco, R.; Crespo, G. A.; Sun, L. C. Efficient BiVO4 photoanodes by postsynthetic treatment: Remarkable improvements in photoelectrochemical performance from facile borate modification. Angew. Chem., Int. Ed. 2019, 58, 19027–19033.

    Article  CAS  Google Scholar 

  18. Pan, J. B.; Wang, B. H.; Wang, J. B.; Ding, H. Z.; Zhou, W.; Liu, X.; Zhang, J. R.; Shen, S.; Guo, J. K.; Chen, L. et al. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation. Angew. Chem. 2021, 133, 1453–1460.

    Article  Google Scholar 

  19. Zhang, X. M.; Zhai, P. L.; Zhang, Y. X.; Wu, Y. Z.; Wang, C.; Ran, L.; Gao, J. F.; Li, Z. W.; Zhang, B.; Fan, Z. Z. et al. Engineering single-atomic Ni-N4-O sites on semiconductor photoanodes for high-performance photoelectrochemical water splitting. J. Am. Chem. Soc. 2021, 143, 20657–20669.

    Article  CAS  PubMed  Google Scholar 

  20. Ye, S.; Shi, W. W.; Liu, Y.; Li, D. F.; Yin, H.; Chi, H. B.; Luo, Y. L.; Ta, N.; Fan, F. T.; Wang, X. L. et al. Unassisted photoelectrochemical cell with multimediator modulation for solar water splitting exceeding 4% solar-to-hydrogen efficiency. J. Am. Chem. Soc. 2021, 143, 12499–12508.

    Article  CAS  PubMed  Google Scholar 

  21. Ye, K. H.; Li, H. B.; Huang, D.; **ao, S.; Qiu, W. T.; Li, M. Y.; Hu, Y. W.; Mai, W.; Ji, H. B.; Yang, S. H. Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering. Nat. Commun. 2019, 10, 3687.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pei, L.; Lv, B. H.; Wang, S. B.; Yu, Z. T.; Yan, S. C.; Abe, R.; Zou, Z. G. Oriented growth of Sc-doped Ta3N5 nanorod photoanode achieving low-onset-potential for photoelectrochemical water oxidation. ACS Appl. Energy Mater. 2018, 1, 4150–4157.

    Article  CAS  Google Scholar 

  23. Yi, S. S.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Highly efficient photoelectrochemical water splitting: Surface modification of cobalt-phosphate-loaded Co3O4/Fe2O3 p-n heterojunction nanorod arrays. Adv. Funct. Mater. 2019, 29, 1801902.

    Article  Google Scholar 

  24. Zhang, J. J.; Chang, X. X.; Li, C. C.; Li, A.; Liu, S. S.; Wang, T.; Gong, J. L. WO3 photoanodes with controllable bulk and surface oxygen vacancies for photoelectrochemical water oxidation. J. Mater. Chem. A 2018, 6, 3350–3354.

    Article  CAS  Google Scholar 

  25. Li, Y.; Mei, Q.; Liu, Z. J.; Hu, X. S.; Zhou, Z. H.; Huang, J. W.; Bai, B.; Liu, H.; Ding, F.; Wang, Q. Z. Fluorine-doped iron oxyhydroxide cocatalyst: Promotion on the WO3 photoanode conducted photoelectrochemical water splitting. Appl. Catal. B Environ. 2022, 304, 120995.

    Article  CAS  Google Scholar 

  26. Seo, J.; Nakabayashi, M.; Hisatomi, T.; Shibata, N.; Minegishi, T.; Domen, K. Solar-driven water splitting over a BaTaO2N photoanode enhanced by annealing in argon. ACS Appl. Energy Mater. 2019, 2, 5777–5784.

    Article  CAS  Google Scholar 

  27. Wygant, B. R.; Kawashima, K.; Mullins, C. B. Catalyst or precatalyst The effect of oxidation on transition metal carbide, pnictide, and chalcogenide oxygen evolution catalysts. ACS Energy Lett. 2018, 3, 2956–2966.

    Article  CAS  Google Scholar 

  28. Hausmann, J. N.; Menezes, P. W. Why should transition metal chalcogenides be investigated as water splitting precatalysts even though they transform into (oxyhydr)oxides. Curr. Opin. Electrochem. 2022, 34, 100991.

    Article  CAS  Google Scholar 

  29. Shi, Y. M.; Du, W.; Zhou, W.; Wang, C. H.; Lu, S. S.; Lu, S. Y.; Zhang, B. Unveiling the promotion of surface-adsorbed chalcogenate on the electrocatalytic oxygen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 22470–22474.

    Article  CAS  Google Scholar 

  30. Hausmann, J. N.; Menezes, P. W. Effect of surface-adsorbed and intercalated (oxy)anions on the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202207279.

    Article  CAS  Google Scholar 

  31. Xue, Y. R.; Fang, J. J.; Wang, X. D.; Xu, Z. Y.; Zhang, Y. F.; Lv, Q. Q.; Liu, M. Y.; Zhu, W.; Zhuang, Z. B. Sulfate-functionalized RuFeOx as highly efficient oxygen evolution reaction electrocatalyst in acid. Adv. Funct. Mater. 2021, 31, 2101405.

    Article  CAS  Google Scholar 

  32. Xu, W. W.; Gao, W. C.; Meng, L. X.; Tian, W.; Li, L. Incorporation of sulfate anions and sulfur vacancies in ZnIn2S4 photoanode for enhanced photoelectrochemical water splitting. Adv. Energy Mater. 2021, 11, 2101181.

    Article  CAS  Google Scholar 

  33. Zhang, R. R.; Wang, L.; Pan, L.; Chen, Z. C.; Jia, W. Y.; Zhang, X. W.; Zou, J. J. Solid-acid-mediated electronic structure regulation of electrocatalysts and scaling relation breaking of oxygen evolution reaction. Appl. Catal. B Environ. 2020, 277, 119237.

    Article  CAS  Google Scholar 

  34. Wang, X. L.; Ma, R. G.; Li, S. L.; Xu, M. M.; Liu, L. J.; Feng, Y. H.; Thomas, T.; Yang, M. H.; Wang, J. C. In situ electrochemical oxyanion steering of water oxidation electrocatalysts for optimized activity and stability. Adv. Energy Mater. 2023, 13, 2300765.

    Article  CAS  Google Scholar 

  35. Liao, H. X.; Luo, T.; Tan, P. F.; Chen, K. J.; Lu, L. L.; Liu, Y.; Liu, M.; Pan, J. Unveiling role of sulfate ion in nickel-iron (oxy)hydroxide with enhanced oxygen-evolving performance. Adv. Funct. Mater. 2021, 31, 2102772.

    Article  CAS  Google Scholar 

  36. Liu, C.; Dasgupta, N. P.; Yang, P. D. Semiconductor nanowires for artificial photosynthesis. Chem. Mater. 2014, 26, 415–422.

    Article  CAS  Google Scholar 

  37. Yang, W.; Prabhakar, R. R.; Tan, J.; Tilley, S. D.; Moon, J. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chem. Soc. Rev. 2019, 48, 4979–5015.

    Article  CAS  PubMed  Google Scholar 

  38. Fountaine, K. T.; Lewerenz, H. J.; Atwater, H. A. Efficiency limits for photoelectrochemical water-splitting. Nat. Commun. 2016, 7, 13706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lu, Y.; Popescu, R.; Gerthsen, D.; Feng, Y. C.; Su, W. R.; Hsu, Y. K.; Chen, Y. C. Highly efficient recovery of H2 from industrial waste by sunlight-driven photoelectrocatalysis over a ZnS/Bi2S3/ZnO photoelectrode. ACS Appl. Mater. Interfaces 2022, 14, 7756–7767.

    Article  CAS  PubMed  Google Scholar 

  40. Subramanyam, P.; Meena, B.; Sinha, G. N.; Suryakala, D.; Subrahmanyam, C. Facile synthesis and photoelectrochemical performance of a Bi2S3@rGO nanocomposite photoanode for efficient water splitting. Energy Fuels 2021, 35, 6315–6321.

    Article  CAS  Google Scholar 

  41. Wang, Y. D.; Tian, W.; Chen, L.; Cao, F. R.; Guo, J.; Li, L. Three-dimensional WO3 nanoplate/Bi2S3 nanorod heterojunction as a highly efficient photoanode for improved photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2017, 9, 40235–40243.

    Article  CAS  PubMed  Google Scholar 

  42. **ong, Y. L.; Yang, L.; Nandakumar, D. K.; Yang, Y. B.; Dong, H. M.; Ji, X.; **ao, P.; Tan, S. C. Highly efficient photoelectrochemical water oxidation enabled by enhanced interfacial interaction in 2D/1D In2S3@Bi2S3 heterostructures. J. Mater. Chem. A 2020, 8, 5612–5621.

    Article  CAS  Google Scholar 

  43. Wang, Y.; Liu, M.; Hao, S. Q.; Li, Y.; Li, Q. Q.; Liu, F. Y.; Lai, Y. Q.; Li, J.; Wolverton, C.; Dravid, V. P. et al. Synergistic defect- and interfacial-engineering of a Bi2S3-based nanoplate network for highperformance photoelectrochemical solar water splitting. J. Mater. Chem. A 2022, 10, 7830–7840.

    Article  CAS  Google Scholar 

  44. Li, Y. T.; Liu, Z. F.; Li, J. W.; Ruan, M. N.; Guo, Z. G. An effective strategy of constructing a multijunction structure by integrating a heterojunction and a homojunction to promote the charge separation and transfer efficiency of WO3. J. Mater. Chem. A 2020, 8, 6256–6267.

    Article  CAS  Google Scholar 

  45. Chen, H. Q.; Lin, L. Y.; Chen, S. L. Direct growth of BiVO4/Bi2S3 nanorod array on conductive glass as photocatalyst for enhancing the photoelectrochemical performance. ACS Appl. Energy Mater. 2018, 1, 6089–6100.

    Article  CAS  Google Scholar 

  46. Majumder, S.; Quang, N. D.; Kim, C.; Kim, D. Anion exchange and successive ionic layer adsorption and reaction-assisted coating of BiVO4 with Bi2S3 to produce nanostructured photoanode for enhanced photoelectrochemical water splitting. J. Colloid Interface Sci. 2021, 585, 72–84.

    Article  CAS  PubMed  Google Scholar 

  47. Majumder, S.; Gu, M. J.; Kim, K. H. Facile fabrication of BiVO4/Bi2S3/NiCoO2 for significant photoelectrochemical water splitting. Appl. Surf. Sci. 2022, 574, 151562.

    Article  CAS  Google Scholar 

  48. Chen, Y. C.; Yang, Z. L.; Hsu, Y. K. Unassisted solar water splitting by dual Cu2O-based tandem device with complementary wavelength-dependent quantum efficiency and antipodal conductivity. Renewable Energy 2023, 212, 166–174.

    Article  CAS  Google Scholar 

  49. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  50. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  PubMed  Google Scholar 

  51. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Article  Google Scholar 

  52. Chen, Y. C.; Kuo, H. T.; Popescu, R.; Hsu, Y. K. Ultralow-biased solar photoelectrochemical hydrogen generation by Ag2S/ZnO heterojunction with high efficiency. J. Taiwan Inst. Chem. Eng. 2022, 140, 104554.

    Article  CAS  Google Scholar 

  53. Chen, Y. C.; Wu, Z. J.; Hsu, Y. K. Enhancing the quasi-theoretical photocurrent density of ZnO nanorods via a lukewarm hydrothermal method. Nanoscale 2020, 12, 12292–12299.

    Article  CAS  PubMed  Google Scholar 

  54. Kharbish, S.; Libowitzky, E.; Beran, A. Raman spectra of isolated and interconnected pyramidal XS3 groups (X = Sb, Bi) in stibnite, bismuthinite, kermesite, stephanite and bournonite. Eur. J. Mineral. 2009, 21, 325–333.

    Article  CAS  Google Scholar 

  55. Zhao, Y. Y.; Chua, K. T. E.; Gan, C. K.; Zhang, J.; Peng, B.; Peng, Z. P.; **ong, Q. H. Phonons in Bi2S3 nanostructures: Raman scattering and first-principles studies. Phys. Rev. B 2011, 84, 205330.

    Article  Google Scholar 

  56. Liu, G. J.; Ye, S.; Yan, P. L.; **ong, F. Q.; Fu, P.; Wang, Z. L.; Chen, Z.; Shi, J. Y.; Li, C. Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting. Energy Environ. Sci. 2016, 9, 1327–1334.

    Article  CAS  Google Scholar 

  57. **ao, Y. Q.; Feng, C.; Fu, J.; Wang, F. Z.; Li, C. L.; Kunzelmann, V. F.; Jiang, C. M.; Nakabayashi, M.; Shibata, N.; Sharp, I. D. et al. Band structure engineering and defect control of Ta3N5 for efficient photoelectrochemical water oxidation. Nat. Catal. 2020, 3, 932–940.

    Article  CAS  Google Scholar 

  58. Li, M. X.; Luo, W. J.; Cao, D. P.; Zhao, X.; Li, Z. S.; Yu, T.; Zou, Z. G. A co-catalyst-loaded Ta3N5 photoanode with a high solar photocurrent for water splitting upon facile removal of the surface layer. Angew. Chem., Int. Ed. 2013, 52, 11016–11020.

    Article  CAS  Google Scholar 

  59. Wang, Y.; Li, F.; Zhou, X.; Yu, F. S.; Du, J.; Bai, L. C.; Sun, L. C. Highly efficient photoelectrochemical water splitting with an immobilized molecular Co4O4 cubane catalyst. Angew. Chem., Int. Ed. 2017, 56, 6911–6915.

    Article  CAS  Google Scholar 

  60. Kim, J. H.; Jang, J. W.; Jo, Y. H.; Abdi, F. F.; Lee, Y. H.; van de Krol, R.; Lee, J. S. Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting. Nat. Commun. 2016, 7, 13380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Peerakiatkhajohn, P.; Yun, J. H.; Chen, H. J.; Lyu, M.; Butburee, T.; Wang, L. Z. Stable hematite nanosheet photoanodes for enhanced photoelectrochemical water splitting. Adv. Mater. 2016, 28, 6405–6410.

    Article  CAS  PubMed  Google Scholar 

  62. Sarnowska, M.; Bienkowski, K.; Barczuk, P. J.; Solarska, R.; Augustynski, J. Highly efficient and stable solar water splitting at (Na)WO3 photoanodes in acidic electrolyte assisted by non-noble metal oxygen evolution catalyst. Adv. Energy Mater. 2016, 6, 1600526.

    Article  Google Scholar 

  63. Cai, M. K.; Li, X.; Zhao, H. Y.; Liu, C.; You, Y. M.; Lin, F.; Tong, X.; Wang, Z. M. Decoration of BiVO4 photoanodes with near-infrared quantum dots for boosted photoelectrochemical water oxidation. ACS Appl. Mater. Interfaces 2021, 13, 50046–50056.

    Article  CAS  PubMed  Google Scholar 

  64. Tayebi, M.; Masoumi, Z.; Kolaei, M.; Tayyebi, A.; Tayebi, M.; Seo, B.; Lim, C. S.; Kim, H. G.; Lee, B. K. Highly efficient and stable WO3/MoS2-MoOX photoanode for photoelectrochemical hydrogen production; a collaborative approach of facet engineering and P-N junction. Chem. Eng. J. 2022, 446, 136830.

    Article  CAS  Google Scholar 

  65. Zhang, C. M.; Wang, M.; Gao, K. Y.; Zhu, H. B.; Ma, J.; Fang, X. L.; Wang, X. F.; Ding, Y. Constructing N–Cu–S interface chemical bonds over SnS2 for efficient solar-driven photoelectrochemical water splitting. Small 2023, 19, 2205706.

    Article  CAS  Google Scholar 

  66. Hansen, J. N.; Prats, H.; Toudahl, K. K.; Secher, N. M.; Chan, K.; Kibsgaard, J.; Chorkendorff, I. Is there anything better than Pt for HER. ACS Energy Lett. 2021, 6, 1175–1180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. She, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  68. McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.

    Article  CAS  PubMed  Google Scholar 

  69. McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.

    Article  CAS  PubMed  Google Scholar 

  70. Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

    Article  CAS  PubMed  Google Scholar 

  71. Ran, N.; Song, E. H.; Wang, Y. W.; Zhou, Y.; Liu, J. J. Dynamic coordination transformation of active sites in single-atom MoS2 catalysts for boosted oxygen evolution catalysis. Energy Environ. Sci. 2022, 15, 2071–2083.

    Article  CAS  Google Scholar 

  72. Wang, H.; Zhai, T. T.; Wu, Y. F.; Zhou, T.; Zhou, B. B.; Shang, C. X.; Guo, Z. X. High-valence oxides for high performance oxygen evolution electrocatalysis. Adv. Sci. 2023, 10, 2301706.

    Article  CAS  Google Scholar 

  73. He, S. S.; Ni, F. L.; Ji, Y. J.; Wang, L.; Wen, Y. Z.; Bai, H. P.; Liu, G. J.; Zhang, Y.; Li, Y. Y.; Zhang, B. et al. The p-orbital delocalization of main-group metals to boost CO2 electroreduction. Angew. Chem., Int. Ed. 2018, 57, 16114–16119.

    Article  CAS  Google Scholar 

  74. Zhang, N.; Shang, J.; Deng, X.; Cai, L. J.; Long, R.; **ong, Y. J.; Chai, Y. Governing interlayer strain in bismuth nanocrystals for efficient ammonia electrosynthesis from nitrate reduction. ACS Nano 2022, 16, 4795–4804.

    Article  CAS  PubMed  Google Scholar 

  75. Wang, H. B.; Tang, C. Y.; Sun, B.; Liu, J. C.; **a, Y.; Li, W. Q.; Jiang, C. Z.; He, D.; **ao, X. H. In-situ structural evolution of Bi2O3 nanoparticle catalysts for CO2 electroreduction. Int. J. Extrem. Manuf. 2022, 4, 035002.

    Article  CAS  Google Scholar 

  76. Moehl, T.; Cui, W.; Wick-Joliat, R.; Tilley, S. D. Resistance-based analysis of limiting interfaces in multilayer water splitting photocathodes by impedance spectroscopy. Sustain. Energy Fuels 2019, 3, 2067–2075.

    Article  CAS  Google Scholar 

  77. Han, D.; Du, M. H.; Dai, C. M.; Sun, D. Y.; Chen, S. Y. Influence of defects and dopants on the photovoltaic performance of Bi2S3: First-principles insights. J. Mater. Chem. A 2017, 5, 6200–6210.

    Article  CAS  Google Scholar 

  78. Chen, Y. C.; Hsu, Y. K. Benchmarked capacitive performance of a 330 µm-thick NaxV2O5/CC monolithic electrode via synergism of a hierarchical pore structure and ultrahigh-mass-loading. Nanoscale 2020, 12, 14290–14297.

    Article  CAS  PubMed  Google Scholar 

  79. Rath, A. K.; Bernechea, M.; Martinez, L.; Konstantatos, G. Solution-processed heterojunction solar cells based on p-type PbS quantum dots and n-type Bi2S3 nanocrystals. Adv. Mater. 2011, 23, 3712–3717.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

“National Science Council” and “National Dong Hwa University” supported this research under contract MOST 111-2221-E-259-004-MY3. This work was also supported by the National Natural Science Foundation of China and Shanghai Jiao Tong University (Nos. 22109096, WF220528005 and ZXDF280001/024). The authors further acknowledge the technical support from Precision Analysis and Material Research Center, “National Taipei University of Technology” for the structural characterization of Bi2S3/ZnO NRs by means of X-ray diffraction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Kuei Hsu.

Electronic Supplementary Material

12274_2024_6653_MOESM1_ESM.pdf

Electronic Supplementary Material: High-performance Bi2S3/ZnO photoanode enabled by interfacial engineering with oxyanion for efficient photoelectrochemical water oxidation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YC., Jui, HY., Feng, Y. et al. High-performance Bi2S3/ZnO photoanode enabled by interfacial engineering with oxyanion for efficient photoelectrochemical water oxidation. Nano Res. 17, 5996–6005 (2024). https://doi.org/10.1007/s12274-024-6653-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6653-y

Keywords

Navigation