Log in

Selective oxygen electroreduction to hydrogen peroxide in acidic media: The superiority of single-atom catalysts

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-electron oxygen reduction reaction (2e-ORR) provides an environmentally friendly direction for the on-site production of hydrogen peroxide (H2O2). Central to this technology is the exploitation of efficient, economical, and safe 2e-ORR electrocatalysts. This overview starts with the fundamental chemistry of ORR to highlight the decisive role of adsorbing intermediates on the reaction pathway and activity, followed by a comprehensive survey of the tuning strategies to favor 2e-ORR on traditional precious metals. The latest achievements in designing efficient and selective precious-metal-based single-atom catalysts (SACs) and metal-nitrogen-carbon (M-Nx/C) catalysts, from the aspects of material synthesis, theoretical calculations, and mass transport promotion, are systematically summarized. Brief introductions on the evaluation metrics for 2e-ORR catalysts and the primary reactor designs for cathodic H2O2 synthesis are also included. We conclude this review with an outlook on the challenges and direction of efforts to advance electrocatalytic 2e-ORR into realistic H2O2 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ciriminna, R.; Albanese, L.; Meneguzzo, F.; Pagliaro, M. Hydrogen peroxide: A key chemical for today’s sustainable development. ChemSusChem 2016, 9, 3374–3381.

    Article  CAS  PubMed  Google Scholar 

  2. Lane, B. S.; Burgess, K. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide. Chem. Rev. 2003, 103, 2457–2474.

    Article  CAS  PubMed  Google Scholar 

  3. Hage, R.; Lienke, A. Applications of transition-metal catalysts to textile and wood-pulp bleaching. Angew. Chem., Int. Ed. 2005, 45, 206–222.

    Article  Google Scholar 

  4. Brillas, E.; Sirés, I.; Oturan, M. A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 2009, 109, 6570–6631.

    Article  CAS  PubMed  Google Scholar 

  5. Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.

    Article  CAS  Google Scholar 

  6. Gao, G. H.; Tian, Y. N.; Gong, X. X.; Pan, Z. Y.; Yang, K. Y.; Zong, B. N. Advances in the production technology of hydrogen peroxide. Chin. J. Catal. 2020, 41, 1039–1047.

    Article  CAS  Google Scholar 

  7. Yi, Y. H.; Wang, L.; Li, G.; Guo, H. C. A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: Noble-metal catalytic method, fuel-cell method and plasma method. Catal. Sci. Technol. 2016, 6, 1593–1610.

    Article  CAS  Google Scholar 

  8. Edwards, J. K.; Carley, A. F.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. Direct synthesis of hydrogen peroxide from H2 and O2 using supported Au−Pd catalysts. Faraday Discuss. 2008, 138, 225–239.

    Article  CAS  PubMed  Google Scholar 

  9. Edwards, J. K.; Hutchings, G. J. Palladium and gold-palladium catalysts for the direct synthesis of hydrogen peroxide. Angew. Chem., Int. Ed. 2008, 47, 9192–9198.

    Article  CAS  Google Scholar 

  10. Gheewala, C. D.; Collins, B. E.; Lambert, T. H. An aromatic ion platform for enantioselective Brønsted acid catalysis. Science 2016, 351, 961–965.

    Article  CAS  PubMed  Google Scholar 

  11. Flaherty, D. W. Direct synthesis of H2O2 from H2 and O2 on Pd catalysts: Current understanding, outstanding questions, and research needs. ACS Catal. 2018, 8, 1520–1527.

    Article  CAS  Google Scholar 

  12. Ranganathan, S.; Sieber, V. Recent advances in the direct synthesis of hydrogen peroxide using chemical catalysis—A review. Catalysts 2018, 8, 379.

    Article  Google Scholar 

  13. Edwards, J. K.; Freakley, S. J.; Lewis, R. J.; Pritchard, J. C.; Hutchings, G. J. Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Catal. Today 2015, 248, 3–9.

    Article  CAS  Google Scholar 

  14. Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Toward the decentralized electrochemical production of H2O2: A focus on the catalysis. ACS Catal. 2018, 8, 4064–4081.

    Article  CAS  Google Scholar 

  15. Pang, Y. Y.; **e, H.; Sun, Y.; Titirici, M. M.; Chai, G. L. Electrochemical oxygen reduction for H2O2 production: Catalysts, pH effects and mechanisms. J. Mater. Chem. A 2020, 8, 24996–25016.

    Article  CAS  Google Scholar 

  16. Lewis, R. J.; Hutchings, G. J. Recent advances in the direct synthesis of H2O2. ChemCatChem 2019, 11, 298–308.

    Article  CAS  Google Scholar 

  17. Jiang, Y. Y.; Ni, P. J.; Chen, C. X.; Lu, Y. Z.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 2018, 8, 1801909.

    Article  Google Scholar 

  18. Wang, Y. L.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. R. Electrocatalytic oxygen reduction to hydrogen peroxide: From homogeneous to heterogeneous electrocatalysis. Adv. Energy Mater. 2021, 11, 2003323.

    Article  CAS  Google Scholar 

  19. Otsuka, K.; Yamanaka, I. One step synthesis of hydrogen peroxide through fuel cell reaction. Electrochim. Acta 1990, 35, 319–322.

    Article  CAS  Google Scholar 

  20. Yamanaka, I.; Onizawa, T.; Takenaka, S.; Otsuka, K. Direct and continuous production of hydrogen peroxide with 93% selectivity using a fuel-cell system. Angew. Chem., Int. Ed. 2003, 42, 3653–3655.

    Article  CAS  Google Scholar 

  21. Yamanaka, I.; Hashimoto, T.; Ichihashi, R.; Otsuka, K. Direct synthesis of H2O2 acid solutions on carbon cathode prepared from activated carbon and vapor-growing-carbon-fiber by a H2/O2 fuel cell. Electrochim. Acta 2008, 53, 4824–4832.

    Article  CAS  Google Scholar 

  22. Jung, E.; Shin, H.; Antink, W. H.; Sung, Y. E.; Hyeon, T. Recent advances in electrochemical oxygen reduction to H2O2: Catalyst and cell design. ACS Energy Lett. 2020, 5, 1881–1892.

    Article  CAS  Google Scholar 

  23. Foller, P. C.; Bombard, R. T. Processes for the production of mixtures of caustic soda and hydrogen peroxide via the reduction of oxygen. J. Appl. Electrochem. 1995, 25, 613–627.

    Article  CAS  Google Scholar 

  24. Zhang, J. Y.; Zhang, H. C.; Cheng, M. J.; Lu, Q. Tailoring the electrochemical production of H2O2: Strategies for the rational design of high-performance electrocatalysts. Small 2020, 16, 1902845.

    Article  CAS  Google Scholar 

  25. Wang, N.; Ma, S. B.; Zuo, P. J.; Duan, J. Z.; Hou, B. R. Recent progress of electrochemical production of hydrogen peroxide by two-electron oxygen reduction reaction. Adv. Sci. 2021, 8, 2100076.

    Article  CAS  Google Scholar 

  26. Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 2013, 12, 1137–1143.

    Article  CAS  PubMed  Google Scholar 

  27. Verdaguer-Casadevall, A.; Deiana, D.; Karamad, M.; Siahrostami, S.; Malacrida, P.; Hansen, T. W.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Trends in the electrochemical synthesis of H2O2: Enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 2014, 14, 1603–1608.

    Article  CAS  PubMed  Google Scholar 

  28. Yang, S.; Tak, Y. J.; Kim, J.; Soon, A.; Lee, H. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal. 2017, 7, 1301–1307.

    Article  CAS  Google Scholar 

  29. Sahoo, S. K.; Ye, Y.; Lee, S.; Park, J.; Lee, H.; Lee, J.; Han, J. W. Rational design of TiC-supported single-atom electrocatalysts for hydrogen evolution and selective oxygen reduction reactions. ACS Energy Lett. 2019, 4, 126–132.

    Article  CAS  Google Scholar 

  30. Choi, C. H.; Kim, M.; Kwon, H. C.; Cho, S. J.; Yun, S.; Kim, H. T.; Mayrhofer, K. J. J.; Kim, H.; Choi, M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 2016, 7, 10922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shen, R. A.; Chen, W. X.; Peng, Q.; Lu, S. Q.; Zheng, L. R.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J. T.; Zhuang, Z. B. et al. High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem 2019, 5, 2099–2110.

    Article  CAS  Google Scholar 

  32. Chen, S. C.; Chen, Z. H.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T. R.; Liu, Y. Z.; Yan, X. Z.; Nilsson, E. et al. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2018, 140, 7851–7859.

    Article  CAS  PubMed  Google Scholar 

  33. Melchionna, M.; Fornasiero, P.; Prato, M. The rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductions. Adv. Mater. 2019, 31, 1802920.

    Article  Google Scholar 

  34. Zhou, Y.; Chen, G.; Zhang, J. J. A review of advanced metal-free carbon catalysts for oxygen reduction reactions towards the selective generation of hydrogen peroxide. J. Mater. Chem. A 2020, 8, 20849–20869.

    Article  CAS  Google Scholar 

  35. Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J. H.; Yang, P. D.; McCloskey, B. D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 2018, 1, 282–290.

    Article  Google Scholar 

  36. Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; **e, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.

    Article  CAS  Google Scholar 

  37. Sun, Y. Y.; Silvioli, L.; Sahraie, N. R.; Ju, W.; Li, J. K.; Zitolo, A.; Li, S.; Bagger, A.; Arnarson, L.; Wang, X. L. et al. Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts. J. Am. Chem. Soc. 2019, 141, 12372–12381.

    Article  CAS  PubMed  Google Scholar 

  38. Cui, X. Q.; Zhong, L. J.; Zhao, X.; **e, J. X.; He, D. Q.; Yang, X.; Lin, K. L.; Wang, H.; Niu, L. Ultrafine Co nanoparticles confined in nitrogen-doped carbon toward two-electron oxygen reduction reaction for H2O2 electrosynthesis in acidic media. Chin. Chem. Lett. 2023, 34, 108291.

    Article  CAS  Google Scholar 

  39. Gong, H. X.; Wei, L. Z.; Chen, S. C.; Chen, Z. H.; Jaramillo, T. F.; Bao, Z. N. Carbon flowers as electrocatalysts for the reduction of oxygen to hydrogen peroxide. Nano Res. 2023, 16, 11556–11563.

    Article  CAS  Google Scholar 

  40. Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

    Article  CAS  PubMed  Google Scholar 

  41. Gao, J. J.; Liu, B. Progress of electrochemical hydrogen peroxide synthesis over single atom catalysts. ACS Materials Lett. 2020, 2, 1008–1024.

    Article  CAS  Google Scholar 

  42. Liu, K. Y.; Chen, P. W.; Sun, Z. Y.; Chen, W. X.; Zhou, Q.; Gao, X. The atomic interface effect of single atom catalysts for electrochemical hydrogen peroxide production. Nano Res. 2023, 16, 10724–10741.

    Article  CAS  Google Scholar 

  43. Qiang, Z. M.; Chang, J. H.; Huang, C. P. Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Res. 2002, 36, 85–94.

    Article  CAS  PubMed  Google Scholar 

  44. Kuo, W. G. Decolorizing dye wastewater with Fenton’s reagent. Water Res. 1992, 26, 881–886.

    Article  CAS  Google Scholar 

  45. Miklos, D. B.; Remy, C.; Jekel, M.; Linden, K. G.; Drewes, J. E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131.

    Article  CAS  PubMed  Google Scholar 

  46. Kremer, M. L. The Fenton Reaction. Dependence of the Rate on pH. J. Phys. Chem. A 2003, 107, 1734–1741.

    Article  CAS  Google Scholar 

  47. Mustain, W. E.; Chatenet, M.; Page, M.; Kim, Y. S. Durability challenges of anion exchange membrane fuel cells. Energy Environ. Sci. 2020, 13, 2805–2838.

    Article  CAS  Google Scholar 

  48. Merle, G.; Wessling, M.; Nijmeijer, K. Anion exchange membranes for alkaline fuel cells: A review. J. Membr. Sci. 2011, 377, 1–35.

    Article  CAS  Google Scholar 

  49. Li, W.; Bonakdarpour, A.; Gyenge, E.; Wilkinson, D. P. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell. ChemSusChem 2013, 6, 2137–2143.

    Article  CAS  PubMed  Google Scholar 

  50. Yamanaka, I.; Murayama, T. Neutral H2O2 synthesis by electrolysis of water and O2. Angew. Chem., Int. Ed. 2008, 47, 1900–1902.

    Article  CAS  Google Scholar 

  51. Sun, K.; Xu, W. W.; Lin, X.; Tian, S. B.; Lin, W. F.; Zhou, D. J.; Sun, X. M. Electrochemical oxygen reduction to hydrogen peroxide via a two-electron transfer pathway on carbon-based single-atom catalysts. Adv. Mater. Interfaces 2021, 8, 2001360.

    Article  CAS  Google Scholar 

  52. Siahrostami, S.; Villegas, S. J.; Mostaghimi, A. H. B.; Back, S.; Farimani, A. B.; Wang, H. T.; Persson, K. A.; Montoya, J. A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide. ACS Catal. 2020, 10, 7495–7511.

    Article  CAS  Google Scholar 

  53. Viswanathan, V.; Hansen, H. A.; Rossmeisl, J.; Norskov, J. K. Unifying the 2e and 4e reduction of oxygen on metal surfaces. J. Phys. Chem. Lett. 2012, 3, 2948–2951.

    Article  CAS  PubMed  Google Scholar 

  54. Lin, Z. H.; Zhang, Q. R.; Pan, J.; Tsounis, C.; Esmailpour, A. A.; **, S. B.; Yang, H. Y.; Han, Z. J.; Yun, J.; Amal, R. et al. Atomic Co decorated free-standing graphene electrode assembly for efficient hydrogen peroxide production in acid. Energy Environ. Sci. 2022, 15, 1172–1182.

    Article  CAS  Google Scholar 

  55. Koper, M. T. M. Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 2013, 4, 2710–2723.

    Article  CAS  Google Scholar 

  56. Siahrostami, S.; Verdaguer-Casdevall, A.; Karamad, M.; Chorkendorff, I.; Stephens, I. E. L.; Rossmeisl, J. Activity and selectivity for O2 reduction to H2O2 on transition metal surfaces. ECS Trans. 2013, 58, 53–62.

    Article  Google Scholar 

  57. Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

    Article  CAS  PubMed  Google Scholar 

  58. Zagal, J. H.; Koper, M. T. M. Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2016, 55, 14510–14521.

    Article  CAS  Google Scholar 

  59. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad499.

    Article  Google Scholar 

  60. Tripković, V.; Skúlason, E.; Siahrostami, S.; Nørskov, J. K.; Rossmeisl, J. The oxygen reduction reaction mechanism on Pt (111) from density functional theory calculations. Electrochim. Acta 2010, 55, 7975–7981.

    Article  Google Scholar 

  61. Montemore, M. M.; van Spronsen, M. A.; Madix, R. J.; Friend, C. M. O2 activation by metal surfaces: Implications for bonding and reactivity on heterogeneous catalysts. Chem. Rev. 2018, 118, 2816–2862

    Article  CAS  PubMed  Google Scholar 

  62. Cheng, J.; Libisch, F.; Carter, E. A. Dissociative adsorption of O2 on Al (111): The role of orientational degrees of freedom. J. Phys. Chem. Lett. 2015, 6, 1661–1665.

    Article  CAS  PubMed  Google Scholar 

  63. Chang, Q. W.; Zhang, P.; Mostaghimi, A. H. B.; Zhao, X. R.; Denny, S. R.; Lee, J. H.; Gao, H. P.; Zhang, Y.; **n, H. L.; Siahrostami, S. et al. Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon. Nat. Commun. 2020, 11, 2178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Antink, W. H.; Park, S.; Lee, K. S. et al. Atomic-level tuning of Co−N−C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 2020, 19, 436–442.

    Article  CAS  PubMed  Google Scholar 

  65. Sheng, H. Y.; Hermes, E. D.; Yang, X. H.; Ying, D. W.; Janes, A. N.; Li, W. J.; Schmidt, J. R.; **, S. Electrocatalytic production of H2O2 by selective oxygen reduction using earth-abundant cobalt pyrite (CoS2). ACS Catal. 2019, 9, 8433–8442.

    Article  CAS  Google Scholar 

  66. Sun, Y. Y.; Sinev, I.; Ju, W.; Bergmann, A.; Dresp, S.; Kühl, S.; Spöri, C.; Schmies, H.; Wang, H.; Bernsmeier, D. et al. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts. ACS Catal. 2018, 8, 2844–2856.

    Article  CAS  Google Scholar 

  67. Wei, J. Q.; Chen, X. D.; Li, S. Z. Electrochemical syntheses of nanomaterials and small molecules for electrolytic hydrogen production. J. Electrochem. 2022, 28, 2214012.

    Google Scholar 

  68. Jiang, K.; Back, S.; Akey, A. J.; **a, C.; Hu, Y. F.; Liang, W. T.; Schaak, D.; Stavitski, E.; Nørskov, J. K.; Siahrostami, S. et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 2019, 10, 3997.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Čolić, V.; Yang, S.; Révay, Z.; Stephens, I. E. L.; Chorkendorff, I. Carbon catalysts for electrochemical hydrogen peroxide production in acidic media. Electrochim. Acta 2018, 272, 192–202.

    Article  Google Scholar 

  70. Murray, A. T.; Voskian, S.; Schreier, M.; Hatton, T. A.; Surendranath, Y. Electrosynthesis of hydrogen peroxide by phase-transfer catalysis. Joule 2019, 3, 2942–2954.

    Article  CAS  Google Scholar 

  71. Zhang, J. C.; Yang, H. B.; Gao, J. J.; **, S. B.; Cai, W. Z.; Zhang, J. M.; Cui, P.; Liu, B. Design of hierarchical, three-dimensional freestanding single-atom electrode for H2O2 production in acidic media. Carbon Energy 2020, 2, 276–282.

    Article  CAS  Google Scholar 

  72. Gao, J. J.; Yang, H. B.; Huang, X.; Hung, S. F.; Cai, W. Z.; Jia, C. M.; Miao, S.; Chen, H. M.; Yang, X. F.; Huang, Y. Q. et al. Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst. Chem 2020, 6, 658–674.

    Article  CAS  Google Scholar 

  73. Xu, S. S.; Gao, Y.; Liang, T.; Zhang, L. P.; Wang, B. N,O-coupling towards the selectively electrochemical production of H2O2. Chin. Chem. Lett. 2022, 33, 5152–5157.

    Article  CAS  Google Scholar 

  74. Liu, Y. M.; Quan, X.; Fan, X. F.; Wang, H.; Chen, S. High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem., Int. Ed. 2015, 54, 6837–6841.

    Article  CAS  Google Scholar 

  75. **a, C.; **a, Y.; Zhu, P.; Fan, L.; Wang, H. T. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 2019, 366, 226–231.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, X.; Zhao, X. H.; Zhu, P.; Adler, Z.; Wu, Z. Y.; Liu, Y. Y.; Wang, H. T. Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media. Nat. Commun. 2022, 13, 2880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jirkovsky, J. S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D. J. Single atom hot-spots at Au−Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 2011, 133, 19432–19441.

    Article  CAS  PubMed  Google Scholar 

  78. Genorio, B.; Strmcnik, D.; Subbaraman, R.; Tripkovic, D.; Karapetrov, G.; Stamenkovic, V. R.; Pejovnik, S.; Markovic, N. M. Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules. Nat. Mater. 2010, 9, 998–1003.

    Article  CAS  PubMed  Google Scholar 

  79. Ciapina, E. G.; Lopes, P. P.; Subbaraman, R.; Ticianelli, E. A.; Stamenkovic, V.; Strmcnik, D.; Markovic, N. M. Surface spectators and their role in relationships between activity and selectivity of the oxygen reduction reaction in acid environments. Electrochem. Commun. 2015, 60, 30–33.

    Article  CAS  Google Scholar 

  80. Stamenkovic, V.; Markovic, N. M.; Ross, P. N. Jr. Structure-relationships in electrocatalysis: Oxygen reduction and hydrogen oxidation reactions on Pt (111) and Pt (100) in solutions containing chloride ions. J. Electroanal. Chem. 2001, 500, 44–51.

    Article  CAS  Google Scholar 

  81. He, D. Q.; Zhong, L. J.; Gan, S. Y.; **e, J. X.; Wang, W.; Liu, Z. B.; Guo, W.; Yang, X.; Niu, L. Hydrogen peroxide electrosynthesis via regulating the oxygen reduction reaction pathway on Pt noble metal with ion poisoning. Electrochim. Acta 2021, 371, 137721.

    Article  CAS  Google Scholar 

  82. Choi, C. H.; Kwon, H. C.; Yook, S.; Shin, H.; Kim, H.; Choi, M. Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface. J. Phys. Chem. C 2014, 118, 30063–30070.

    Article  CAS  Google Scholar 

  83. Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem., Int. Ed. 2016, 55, 2058–2062.

    Article  CAS  Google Scholar 

  84. Kim, J. H.; Shin, D.; Lee, J.; Baek, D. S.; Shin, T. J.; Kim, Y. T.; Jeong, H. Y.; Kwak, J. H.; Kim, H.; Joo, S. H. A general strategy to atomically dispersed precious metal catalysts for unravelling their catalytic trends for oxygen reduction reaction. ACS Nano 2020, 14, 1990–2001.

    Article  CAS  PubMed  Google Scholar 

  85. Zhao, J. J.; Fu, C. H.; Ye, K.; Liang, Z.; Jiang, F. L.; Shen, S. Y.; Zhao, X. R.; Ma, L.; Shadike, Z.; Wang, X. M. et al. Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs. Nat. Commun. 2022, 13, 685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. **, M. M.; Liu, W.; Sun, J. Q.; Wang, X. Z.; Zhang, S. S.; Luo, J.; Liu, X. J. Highly dispersed Ag clusters for active and stable hydrogen peroxide production. Nano Res. 2022, 15, 5842–5847.

    Article  CAS  Google Scholar 

  87. von Weber, A.; Baxter, E. T.; White, H. S.; Anderson, S. L. Cluster size controls branching between water and hydrogen peroxide production in electrochemical oxygen reduction at Ptn/ITO. J. Phys. Chem. C 2015, 119, 11160–11170.

    Article  CAS  Google Scholar 

  88. **, J. B.; Yang, S.; Silvioli, L.; Cao, S. F.; Liu, P.; Chen, Q. Y.; Zhao, Y. Y.; Sun, H. Y.; Hansen, J. N.; Haraldsted, J. P. B. et al. Highly active, selective, and stable Pd single-atom catalyst anchored on N-doped hollow carbon sphere for electrochemical H2O2 synthesis under acidic conditions. J. Catal. 2021, 393, 313–323.

    Article  CAS  Google Scholar 

  89. Wang, N.; Zhao, X. H.; Zhang, R.; Yu, S.; Levell, Z. H.; Wang, C. Y.; Ma, S. B.; Zou, P. C.; Han, L. L.; Qin, J. Y. et al. Highly selective oxygen reduction to hydrogen peroxide on a carbon-supported single-atom Pd electrocatalyst. ACS Catal. 2022, 12, 4156–4164.

    Article  CAS  Google Scholar 

  90. Guo, X. Y.; Lin, S. R.; Gu, J. X.; Zhang, S. L.; Chen, Z. F.; Huang, S. P. Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: The power of single-atom catalysts. ACS Catal. 2019, 9, 11042–11054.

    Article  CAS  Google Scholar 

  91. Liu, W.; Zhang, C.; Zhang, J. J.; Huang, X.; Song, M.; Li, J. W.; He, F.; Yang, H. P.; Zhang, J.; Wang, D. L. Tuning the atomic configuration of Co−N−C electrocatalyst enables highly-selective H2O2 production in acidic media. Appl. Catal. B: Environ. 2022, 310, 121312.

    Article  CAS  Google Scholar 

  92. Gong, H. S.; Wei, Z. X.; Gong, Z. C.; Liu, J. J.; Ye, G. L.; Yan, M. M.; Dong, J. C.; Allen, C.; Liu, J. B.; Huang, K. et al. Low-coordinated Co−N−C on oxygenated graphene for efficient electrocatalytic H2O2 production. Adv. Funct. Mater. 2022, 32, 2106886.

    Article  CAS  Google Scholar 

  93. Zhang, Q. R.; Tan, X.; Bedford, N. M.; Han, Z. J.; Thomsen, L.; Smith, S.; Amal, R.; Lu, X. Y. Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production. Nat. Commun. 2020, 11, 4181.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zhao, X. H.; Liu, Y. Y. Origin of selective production of hydrogen peroxide by electrochemical oxygen reduction. J. Am. Chem. Soc. 2021, 143, 9423–9428.

    Article  CAS  Google Scholar 

  95. Muthukrishnan, A.; Nabae, Y.; Okajima, T.; Ohsaka, T. Kinetic approach to investigate the mechanistic pathways of oxygen reduction reaction on Fe-containing N-doped carbon catalysts. ACS Catal. 2015, 5, 5194–5202.

    Article  CAS  Google Scholar 

  96. Bonakdarpour, A.; Lefevre, M.; Yang, R. Z.; Jaouen, F.; Dahn, T.; Dodelet, J. P.; Dahn, J. R. Impact of loading in RRDE experiments on Fe−N−C catalysts: Two- or four-electron oxygen reduction. Electrochem. Solid-State Lett. 2008, 11, B105–B108.

    Article  CAS  Google Scholar 

  97. Wu, K. H.; Wang, D.; Lu, X. Y.; Zhang, X. F.; **e, Z. L.; Liu, Y. F.; Su, B. J.; Chen, J. M.; Su, D. S.; Qi, W. et al. Highly selective hydrogen peroxide electrosynthesis on carbon: In situ interface engineering with surfactants. Chem 2020, 6, 1443–1458.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22209102) and Natural Science Foundation of Shanxi Province (No. 202203021212398).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junming Zhang, Junjie Ge or Jianfeng Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, E., Yang, T., Liang, J. et al. Selective oxygen electroreduction to hydrogen peroxide in acidic media: The superiority of single-atom catalysts. Nano Res. 17, 4668–4681 (2024). https://doi.org/10.1007/s12274-024-6505-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6505-9

Keywords

Navigation