Log in

The atomic interface effect of single atom catalysts for electrochemical hydrogen peroxide production

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Producing hydrogen peroxide (H2O2) through an electrochemical oxygen reduction reaction (ORR) is a safe, green strategy and a promising alternative to traditional energy-intensive anthraquinone processes. Air and renewable power could be utilized for on-site and decentralized H2O2 production, demonstrating significant application potential. Currently, single atom catalysts (SACs) have demonstrated significant advantages in the catalytic production of H2O2 in 2e ORR. However, the selectivity of SACs in ORR once puzzled researchers. This article reviews the research on the development and achievements of H2O2 production by SACs catalysis in recent years. Especially, the structure–performance relationship is a guide to designing new SACs. Combining advanced characterization techniques and theoretical calculation methods, researchers have a clearer and more thorough understanding of the impact of the atomic interface of SACs on ORR catalytic performance. The coordination moiety formed between the active metal center atom and the support seriously determines the selectivity of SACs, mainly manifested in the adsorption of *OOH intermediates. Particularly, the atomic interface of metal atoms together with O/N co-coordination exhibit high selectivity and mass activity, and heteroatoms or functional groups on carbon supports present synergistic effects to promote the production of H2O2 in 2e ORR. Fine and accurate regulation of the atomic interface of SACs directly affects the 2e ORR performance of the catalysts. Therefore, it is important to deeply understand the atomic interface of SACs and contribute to the development of novel catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang, J. Y.; Zhao, T. S.; Solanki, D.; Miao, X. B.; Zhou, W. G.; Hu, S. Selective hydrogen peroxide conversion tailored by surface, interface, and device engineering. Joule 2021, 5, 1432–1461.

    CAS  Google Scholar 

  2. Shi, X. J.; Back, S.; Gill, T. M.; Siahrostami, S.; Zheng, X. L. Electrochemical synthesis of H2O2 by two-electron water oxidation reaction. Chem 2021, 7, 38–63.

    CAS  Google Scholar 

  3. Zhang, Y. N.; Pan, C. S.; Bian, G. M.; Xu, J.; Dong, Y. M.; Zhang, Y.; Lou, Y.; Liu, W. X.; Zhu, Y. F. H2O2 generation from O2 and H2O on a near-infrared absorbing porphyrin supramolecular photocatalyst. Nat. Energy 2023, 8, 361–371.

    CAS  Google Scholar 

  4. Hu, S. Membrane-less photoelectrochemical devices for H2O2 production: Efficiency limit and operational constraint. Sustainable Energy Fuels 2019, 3, 101–114.

    CAS  Google Scholar 

  5. Dowling, J. A.; Rinaldi, K. Z.; Ruggles, T. H.; Davis, S. J.; Yuan, M. Y.; Tong, F.; Lewis, N. S.; Caldeira, K. Role of long-duration energy storage in variable renewable electricity systems. Joule 2020, 4, 1907–1928.

    Google Scholar 

  6. Wen, Y. C.; Zhang, T.; Wang, J. Y.; Pan, Z. L.; Wang, T. F.; Yamashita, H.; Qian, X. F.; Zhao, Y. X. Electrochemical reactors for continuous decentralized H2O2 production. Angew. Chem., Int. Ed. 2022, 61, e202205972.

    CAS  Google Scholar 

  7. Zhu, W. Y.; Chen, S. W. Recent progress of single-atom catalysts in the electrocatalytic reduction of oxygen to hydrogen peroxide. Electroanalysis 2020, 32, 2591–2602.

    CAS  Google Scholar 

  8. Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Çolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Toward the decentralized electrochemical production of H2O2: A focus on the catalysis. ACS Catal. 2018, 8, 4064–4081.

    CAS  Google Scholar 

  9. **a, C.; **a, Y.; Zhu, P.; Fan, L.; Wang, H. T. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 2019, 366, 226–231.

    CAS  Google Scholar 

  10. Zhou, Y.; Chen, G.; Zhang, J. J. A review of advanced metal-free carbon catalysts for oxygen reduction reactions towards the selective generation of hydrogen peroxide. J. Mater. Chem. A 2020, 8, 20849–20869.

    CAS  Google Scholar 

  11. Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L. I.; Sieber, V.; Wang, L.; Ponce de León, C.; Walsh, F. C. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 2019, 3, 442–458.

    CAS  Google Scholar 

  12. Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 2013, 12, 1137–1143.

    CAS  Google Scholar 

  13. **a, Y.; Zhao, X. H.; **a, C.; Wu, Z. Y.; Zhu, P.; Kim, J. Y.; Bai, X. W.; Gao, G. H.; Hu, Y. F.; Zhong, J. et al. Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat. Commun. 2021, 12, 4225.

    CAS  Google Scholar 

  14. Zhang, Y.; Lyu, Z. H.; Chen, Z. T.; Zhu, S. Q.; Shi, Y. F.; Chen, R. H.; **e, M. H.; Yao, Y.; Chi, M. F.; Shao, M. H. et al. Maximizing the catalytic performance of Pd@AuxPd1−x nanocubes in H2O2 production by reducing shell thickness to increase compositional stability. Angew. Chem., Int. Ed. 2021, 60, 19643–19647.

    CAS  Google Scholar 

  15. Ramaswamy, N.; Mukerjee, S. Influence of inner- and outer-sphere electron transfer mechanisms during electrocatalysis of oxygen reduction in alkaline media. J. Phys. Chem. C 2011, 115, 18015–18026.

    CAS  Google Scholar 

  16. Guo, X. Y.; Lin, S. R.; Gu, J. X.; Zhang, S. L.; Chen, Z. F.; Huang, S. P. Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: The power of single-atom catalysts. ACS Catal. 2019, 9, 11042–11054.

    CAS  Google Scholar 

  17. **g, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Google Scholar 

  18. Yu, S. M.; Cheng, X.; Wang, Y. S.; **ao, B.; **ng, Y. R.; Ren, J.; Lu, Y.; Li, H. Y.; Zhuang, C. Q.; Chen, G. High activity and selectivity of single palladium atom for oxygen hydrogenation to H2O2. Nat. Commun. 2022, 13, 4737.

    CAS  Google Scholar 

  19. Sun, Y. Y.; Han, L.; Strasser, P. A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem. Soc. Rev. 2020, 49, 6605–6631.

    CAS  Google Scholar 

  20. Gao, J. J.; Liu, B. Progress of electrochemical hydrogen peroxide synthesis over single atom catalysts. ACS Mater. Lett. 2020, 2, 1008–1024.

    CAS  Google Scholar 

  21. Yang, T.; Yang, C. Y.; Le, J. B.; Yu, Z. Y.; Bu, L. Z.; Li, L. G.; Bai, S. X.; Shao, Q.; Hu, Z. W.; Pao, C. W. et al. Atomically isolated Pd sites within Pd-S nanocrystals enable trifunctional catalysis for direct, electrocatalytic and photocatalytic syntheses of H2O2. Nano Res. 2022, 11, 1861–1867.

    Google Scholar 

  22. Han, A. L.; Zhang, Z. D.; Yang, J. R.; Wang, D. S.; Li, Y. D. Carbon-supported single-atom catalysts for formic acid oxidation and oxygen reduction reactions. Small 2021, 17, 2004500.

    CAS  Google Scholar 

  23. Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    CAS  Google Scholar 

  24. Liu, J. J.; Gong, Z. C.; Yan, M. M.; He, G. C.; Gong, H. S.; Ye, G. L.; Fei, H. L. Electronic structure regulation of single-atom catalysts for electrochemical oxygen reduction to H2O2. Small 2022, 18, 2103824.

    CAS  Google Scholar 

  25. Zhu, P.; **ong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    CAS  Google Scholar 

  26. Liu, H. X.; Peng, X. Y.; Liu, X. J. Single-atom catalysts for the hydrogen evolution reaction. ChemElectroChem 2018, 5, 2963–2974.

    CAS  Google Scholar 

  27. Cao, L. L.; Luo, Q. Q.; Liu, W.; Lin, Y.; Liu, X. K.; Cao, Y. J.; Zhang, W.; Wu, Y. E.; Yang, J. L.; Yao, T. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019, 2, 134–141.

    CAS  Google Scholar 

  28. Lei, X.; Tang, Q. Y.; Zheng, Y. P.; Kidkhunthod, P.; Zhou, X. L.; Ji, B. F.; Tang, Y. B. High-entropy single-atom activated carbon catalysts for sustainable oxygen electrocatalysis. Nat. Sustain., in press, https://doi.org/10.1038/s41893-023-01101-z.

  29. Wang, C. Y.; Schechter, A.; Feng, L. G. Iridium-based catalysts for oxygen evolution reaction in acidic media: Mechanism, catalytic promotion effects and recent progress. Nano Res. Energy 2023, 2, e9120056.

    Google Scholar 

  30. Bai, L. C.; Hsu, C. S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. L. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Energy 2021, 6, 1054–1066.

    CAS  Google Scholar 

  31. Wang, Q.; Shang, L.; Sun-Waterhouse, D.; Zhang, T. R.; Waterhouse, G. Engineering local coordination environments and site densities for high-performance Fe-N-C oxygen reduction reaction electrocatalysis. SmartMat 2021, 2, 154–175.

    CAS  Google Scholar 

  32. Xu, Y. Y.; Xue, H. R.; Li, X. J.; Fan, X. L.; Li, P.; Zhang, T. F.; Chang, K.; Wang, T.; He, J. P. Application of metal-organic frameworks, covalent organic frameworks and their derivates for the metal-air batteries. Nano Res. Energy 2023, 2, e9120052.

    Google Scholar 

  33. Liu, K.; Fu, J. W.; Lin, Y. Y.; Luo, T.; Ni, G. H.; Li, H. M.; Lin, Z.; Liu, M. Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat. Commun. 2022, 13, 2075.

    CAS  Google Scholar 

  34. Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

    CAS  Google Scholar 

  35. Hao, Q.; Zhong, H. X.; Wang, J. Z.; Liu, K. H.; Yan, J. M.; Ren, Z. H.; Zhou, N.; Zhao, X.; Zhang, H.; Liu, D. X. et al. Nickel dualatom sites for electrochemical carbon dioxide reduction. Nat. Synth. 2022, 1, 719–728.

    Google Scholar 

  36. Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, e9120021.

    Google Scholar 

  37. Li, L. L.; Hasan, I. M. U.; Farwa; He, R. N.; Peng, L. W.; Xu, N. N.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro-, and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy 2022, 1, e9120015.

    Google Scholar 

  38. Wu, Z. Y.; Karamad, M.; Yong, X.; Huang, Q. Z.; Cullen, D. A.; Zhu, P.; **a, C.; **ao, Q. F.; Shakouri, M.; Chen, F. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870.

    CAS  Google Scholar 

  39. Zheng, X. B.; Yang, J. R.; Li, P.; Jiang, Z. L.; Zhu, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Sun, W. P.; Dou, S. X. et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202217449.

  40. Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.

    CAS  Google Scholar 

  41. Li, H. B.; Zheng, J. J.; Yang, M. F.; Duan, J. G. Electron and configuration engineering of atomic Cu and multi-oxidated Cu2+1O centers via gasifiable reductant strategy for efficient oxygen reduction toward Zn-air battery. Nano Res. 2023, 16, 2383–2391.

    CAS  Google Scholar 

  42. Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

    CAS  Google Scholar 

  43. Chen, J. X.; Ma, Q.; Zheng, X. L.; Fang, Y. X.; Wang, J.; Dong, S. J. Kinetically restrained oxygen reduction to hydrogen peroxide with nearly 100% selectivity. Nat. Commun. 2022, 13, 2808.

    CAS  Google Scholar 

  44. Sun, K.; Xu, W. W.; Lin, X.; Tian, S. B.; Lin, W. F.; Zhou, D. J.; Sun, X. M. Electrochemical oxygen reduction to hydrogen peroxide via a two-electron transfer pathway on carbon-based single-atom catalysts. Adv. Mater. Interfaces 2021, 8, 2001360.

    CAS  Google Scholar 

  45. Zheng, X. B.; Li, P.; Dou, S. X.; Sun, W. P.; Pan, H. G.; Wang, D. S.; Li, Y. D. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy Environ. Sci. 2021, 14, 2809–2858.

    CAS  Google Scholar 

  46. Xu, J. W.; Zheng, X. L.; Feng, Z. P.; Lu, Z. Y.; Zhang, Z. W.; Huang, W.; Li, Y. B.; Vuckovic, D.; Li, Y. Q.; Dai, S. et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 2021, 4, 233–241.

    Google Scholar 

  47. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Google Scholar 

  48. Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

    CAS  Google Scholar 

  49. Chung, H. T.; Cullen, D. A.; Higgins, D.; Sneed, B. T.; Holby, E. F.; More, K. L.; Zelenay, P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 2017, 357, 479–484.

    CAS  Google Scholar 

  50. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    CAS  Google Scholar 

  51. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; **a, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    CAS  Google Scholar 

  52. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; ** atoms from a perovskite surface for highperformance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    CAS  Google Scholar 

  53. Jiang, Z. L.; Sun, W. M.; Shang, H. S.; Chen, W. X.; Sun, T. T.; Li, H. J.; Dong, J. C.; Zhou, J.; Li, Z.; Wang, Y. et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci. 2019, 12, 3508–3514.

    CAS  Google Scholar 

  54. Feng, C.; Zhang, Z. R.; Wang, D. D.; Kong, Y.; Wei, J.; Wang, R. Y.; Ma, P. Y.; Li, H. L.; Geng, Z. G.; Zuo, M. et al. Tuning the electronic and steric interaction at the atomic interface for enhanced oxygen evolution. J. Am. Chem. Soc. 2022, 144, 9271–9279.

    CAS  Google Scholar 

  55. Guan, S. Y.; Liu, Y. Y.; Zhang, H. H.; Wei, H. J.; Liu, T.; Wu, X. L.; Wen, H.; Shen, R. F.; Mehdi, S.; Ge, X. H. et al. Atomic interface-exciting catalysis on cobalt nitride-oxide for accelerating hydrogen generation. Small 2022, 18, 2107417.

    CAS  Google Scholar 

  56. Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

    CAS  Google Scholar 

  57. Liu, J. J.; Wei, Z. X.; Gong, Z. C.; Yan, M. M.; Hu, Y. F.; Zhao, S. L.; Ye, G. L.; Fei, H. L. Single-atom CoN4 sites with elongated bonding induced by phosphorus do** for efficient H2O2 electrosynthesis. Appl. Catal. B:Environ. 2023, 324, 122267.

    CAS  Google Scholar 

  58. Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

    CAS  Google Scholar 

  59. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    CAS  Google Scholar 

  60. Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

    CAS  Google Scholar 

  61. Choi, C. H.; Kim, M.; Kwon, H. C.; Cho, S. J.; Yun, S.; Kim, H. T.; Mayrhofer, K. J. J.; Kim, H.; Choi, M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 2016, 7, 10922.

    CAS  Google Scholar 

  62. Yang, S.; Tak, Y. J.; Kim, J.; Soon, A.; Lee, H. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal. 2017, 7, 1301–1307.

    CAS  Google Scholar 

  63. Sahoo, S. K.; Ye, Y.; Lee, S.; Park, J.; Lee, H.; Lee, J.; Han, J. W. Rational design of TiC-supported single-atom electrocatalysts for hydrogen evolution and selective oxygen reduction reactions. ACS Energy Lett. 2019, 4, 126–132.

    CAS  Google Scholar 

  64. Jiang, K.; Back, S.; Akey, A. J.; **a, C.; Hu, Y. F.; Liang, W. T.; Schaak, D.; Stavitski, E.; Nørskov, J. K.; Siahrostami, S. et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 2019, 10, 3997.

    Google Scholar 

  65. Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Hooch Antink, W.; Park, S.; Lee, K. S. et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 2020, 19, 436–442.

    CAS  Google Scholar 

  66. Tang, C.; Chen, L.; Li, H. J.; Li, L. Q.; Jiao, Y.; Zheng, Y.; Xu, H. L.; Davey, K.; Qiao, S. Z. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 2021, 143, 7819–7827.

    CAS  Google Scholar 

  67. Chen, S. Y.; Luo, T.; Li, X. Q.; Chen, K. J.; Fu, J. W.; Liu, K.; Cai, C.; Wang, Q. Y.; Li, H. M.; Chen, Y. et al. Identification of the highly active Co–N4 coordination motif for selective oxygen reduction to hydrogen peroxide. J. Am. Chem. Soc. 2022, 144, 14505–14516.

    CAS  Google Scholar 

  68. Yan, M. M.; Wei, Z. X.; Gong, Z. C.; Johannessen, B.; Ye, G. L.; He, G. C.; Liu, J. J.; Zhao, S. L.; Cui, C. Y.; Fei, H. L. Sb2S3-templated synthesis of sulfur-doped Sb-N-C with hierarchical architecture and high metal loading for H2O2 electrosynthesis. Nat. Commun. 2023, 14, 368.

    CAS  Google Scholar 

  69. Yan, J. X.; Ye, F. H.; Dai, Q. B.; Ma, X. Y.; Fang, Z. H.; Dai, L. M.; Hu, C. G. Recent progress in carbon-based electrochemical catalysts: From structure design to potential applications. Nano Res. Energy 2023, 2, e9120047.

    Google Scholar 

  70. Gao, Y.; Liu, B. Z.; Wang, D. S. Microenvironment engineering of single/dual-atom catalysts for electrocatalytic application. Adv. Mater., in press, https://doi.org/10.1002/adma.202209654.

  71. Wang, B. Q.; Chen, S. H.; Zhang, Z. D.; Wang, D. S. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 84–110.

    CAS  Google Scholar 

  72. Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. D.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

    CAS  Google Scholar 

  73. Zhuang, Z. C.; **a, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; **a, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of singleatom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    CAS  Google Scholar 

  74. Gao, J. J.; Yang, H. B.; Huang, X.; Hung, S. F.; Cai, W. Z.; Jia, C. M.; Miao, S.; Chen, H. M.; Yang, X. F.; Huang, Y. Q. et al. Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst. Chem 2020, 6, 658–674.

    CAS  Google Scholar 

  75. Cai, Y. M.; Fu, J. J.; Zhou, Y.; Chang, Y. C.; Min, Q. H.; Zhu, J. J.; Lin, Y. H.; Zhu, W. L. Insights on forming N, O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat. Commun. 2021, 12, 586.

    CAS  Google Scholar 

  76. Fan, W. J.; Duan, Z. Y.; Liu, W.; Mehmood, R.; Qu, J. T.; Cao, Y. C.; Guo, X. Y.; Zhong, J.; Zhang, F. X. Rational design of heterogenized molecular phthalocyanine hybrid single-atom electrocatalyst towards two-electron oxygen reduction. Nat. Commun. 2023, 14, 1426.

    CAS  Google Scholar 

  77. Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

    CAS  Google Scholar 

  78. Gong, H. S.; Wei, Z. X.; Gong, Z. C.; Liu, J. J.; Ye, G. L.; Yan, M. M.; Dong, J. C.; Allen, C.; Liu, J. B.; Huang, K. et al. Low-coordinated Co-N-C on oxygenated graphene for efficient electrocatalytic H2O2 production. Adv. Funct. Mater. 2022, 32, 2106886.

    CAS  Google Scholar 

  79. Cao, P. K.; Quan, X.; Nie, X. W.; Zhao, K.; Liu, Y. M.; Chen, S.; Yu, H. T.; Chen, J. G. Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents. Nat. Commun. 2023, 14, 172.

    CAS  Google Scholar 

  80. Wang, Y.; Zhang, Z. S.; Zhang, X.; Yuan, Y. B.; Jiang, Z.; Zheng, H. Z.; Wang, Y. G.; Zhou, H.; Liang, Y. Y. Theory-driven design of electrocatalysts for the two-electron oxygen reduction reaction based on dispersed metal phthalocyanines. CCS Chem. 2022, 4, 228–236.

    CAS  Google Scholar 

  81. Wang, N.; Zhao, X. H.; Zhang, R.; Yu, S.; Levell, Z. H.; Wang, C. Y.; Ma, S. B.; Zou, P. C.; Han, L. L.; Qin, J. Y. et al. Highly selective oxygen reduction to hydrogen peroxide on a carbon-supported single-atom Pd electrocatalyst. ACS Catal. 2022, 12, 4156–4164.

    CAS  Google Scholar 

  82. Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

    CAS  Google Scholar 

  83. Liu, C.; Li, H.; Liu, F.; Chen, J. S.; Yu, Z. X.; Yuan, Z. W.; Wang, C. J.; Zheng, H. L.; Henkelman, G.; Wei, L. et al. Intrinsic activity of metal centers in metal-nitrogen-carbon single-atom catalysts for hydrogen peroxide synthesis. J. Am. Chem. Soc. 2020, 142, 21861–21871.

    CAS  Google Scholar 

  84. Zhang, F. F.; Zhu, Y. L.; Tang, C.; Chen, Y.; Qian, B. B.; Hu, Z. W.; Chang, Y. C.; Pao, C. W.; Lin, Q.; Kazemi, S. A. et al. High-efficiency electrosynthesis of hydrogen peroxide from oxygen reduction enabled by a tungsten single atom catalyst with unique terdentate N1O2 coordination. Adv. Funct. Mater. 2022, 32, 2110224.

    CAS  Google Scholar 

  85. Wu, Y. H.; Ding, Y. F.; Han, X.; Li, B. B.; Wang, Y. F.; Dong, S. Y.; Li, Q. L.; Dou, S. X.; Sun, J. Y.; Sun, J. H. Modulating coordination environment of Fe single atoms for high-efficiency all-pH-tolerated H2O2 electrochemical production. Appl. Catal. B:Environ. 2022, 315, 121578.

    CAS  Google Scholar 

  86. Wang, Y. L.; Shi, R.; Shang, L.; Waterhouse, G. I. N.; Zhao, J. Q.; Zhang, Q. H.; Gu, L.; Zhang, T. R. High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew. Chem., Int. Ed. 2020, 59, 13057–13062.

    CAS  Google Scholar 

  87. **ao, C. Q.; Cheng, L.; Zhu, Y. H.; Wang, G. C.; Chen, L. Y.; Wang, Y. T.; Chen, R. Z.; Li, Y. H.; Li, C. Z. Super-coordinated nickel N4Ni1O2 site single-atom catalyst for selective H2O2 electrosynthesis at high current densities. Angew. Chem., Int. Ed. 2022, 61, e202206544.

    CAS  Google Scholar 

  88. Wei, G. Y.; Liu, X. P.; Zhao, Z. W.; Men, C. B.; Ding, Y.; Gao, S. Y. Constructing ultrahigh-loading unsymmetrically coordinated Zn-N3O single-atom sites with efficient oxygen reduction for H2O2 production. Chem. Eng. J. 2023, 455, 140721.

    CAS  Google Scholar 

  89. Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

    CAS  Google Scholar 

  90. Zhang, Q. R.; Tan, X.; Bedford, N. M.; Han, Z. J.; Thomsen, L.; Smith, S.; Amal, R.; Lu, X. Y. Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production. Nat. Commun. 2020, 11, 4181.

    Google Scholar 

  91. Jia, Y. L.; Xue, Z. Q.; Yang, J.; Liu, Q. L.; **an, J. H.; Zhong, Y. C.; Sun, Y. M.; Zhang, X. X.; Liu, Q. H.; Yao, D. X. et al. Tailoring the electronic structure of an atomically dispersed zinc electrocatalyst: Coordination environment regulation for high selectivity oxygen reduction. Angew. Chem., Int. Ed. 2022, 61, e202110838.

    CAS  Google Scholar 

  92. Zhang, B. W.; Zheng, T.; Wang, Y. X.; Du, Y.; Chu, S. Q.; **a, Z. H.; Amal, R.; Dou, S. X.; Dai, L. M. Highly efficient and selective electrocatalytic hydrogen peroxide production on Co-O-C active centers on graphene oxide. Commun. Chem. 2022, 5, 43.

    CAS  Google Scholar 

  93. Xu, W. W.; Liang, Z.; Gong, S.; Zhang, B. S.; Wang, H.; Su, L. F.; Chen, X.; Han, N. N.; Tian, Z. Q.; Kallio, T. et al. Fast and stable electrochemical production of H2O2 by electrode architecture engineering. ACS Sustainable Chem. Eng. 2021, 9, 7120–7129.

    CAS  Google Scholar 

  94. Song, X. Z.; Li, N.; Zhang, H.; Wang, H.; Wang, L. Y.; Bian, Z. Y. Promotion of hydrogen peroxide production on graphene-supported atomically dispersed platinum: Effects of size on oxygen reduction reaction pathway. J. Power Sources 2019, 435, 226771.

    CAS  Google Scholar 

  95. Song, X. Z.; Li, N.; Zhang, H.; Wang, L.; Yan, Y. J.; Wang, H.; Wang, L. Y.; Bian, Z. Y. Graphene-supported single nickel atom catalyst for highly selective and efficient hydrogen peroxide production. ACS Appl. Mater. Interfaces 2020, 12, 17519–17527.

    CAS  Google Scholar 

  96. Yang, Q. H.; Xu, W. W.; Gong, S.; Zheng, G. K.; Tian, Z. Q.; Wen, Y. J.; Peng, L. M.; Zhang, L. J.; Lu, Z. Y.; Chen, L. Atomically dispersed Lewis acid sites boost 2-electron oxygen reduction activity of carbon-based catalysts. Nat. Commun. 2020, 11, 5478.

    CAS  Google Scholar 

  97. Tang, C.; Jiao, Y.; Shi, B. Y.; Liu, J. N.; **e, Z. H.; Chen, X.; Zhang, Q.; Qiao, S. Z. Coordination tunes selectivity: Two-electron oxygen reduction on high-loading molybdenum single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 9171–9176.

    CAS  Google Scholar 

  98. Zhao, J. J.; Fu, C. H.; Ye, K.; Liang, Z.; Jiang, F. L.; Shen, S. Y.; Zhao, X. R.; Ma, L.; Shadike, Z.; Wang, X. M. et al. Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs. Nat. Commun. 2022, 13, 685.

    CAS  Google Scholar 

  99. Zou, H. Y.; Arachchige, L. J.; Dai, H.; Liu, H.; Jiao, F. F.; Hu, W.; Li, F.; Wei, S. T.; Sun, C. H.; Duan, L. L. Pushing the limit of atomically dispersed Au catalysts for electrochemical H2O2 production by precise electronic perturbation of the active site. Chem Catal. 2023, 3, 100583.

    CAS  Google Scholar 

  100. Ledendecker, M.; Pizzutilo, E.; Malta, G.; Fortunato, G. V.; Mayrhofer, K. J. J.; Hutchings, G. J.; Freakley, S. J. Isolated Pd sites as selective catalysts for electrochemical and direct hydrogen peroxide synthesis. ACS Catal. 2020, 10, 5928–5938.

    CAS  Google Scholar 

  101. Sun, Y. Y.; Silvioli, L.; Sahraie, N. R.; Ju, W.; Li, J. K.; Zitolo, A.; Li, S.; Bagger, A.; Arnarson, L.; Wang, X. L. et al. Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts. J. Am. Chem. Soc. 2019, 141, 12372–12381.

    CAS  Google Scholar 

  102. Zhang, J. C.; Yang, H. B.; Gao, J. J.; **, S. B.; Cai, W. Z.; Zhang, J. M.; Cui, P.; Liu, B. Design of hierarchical, three-dimensional free-staning single-atom electrode for H2O2 production in acidic media. Carbon Energy 2020, 2, 276–282.

    CAS  Google Scholar 

  103. Liu, W.; Zhang, C.; Zhang, J. J.; Huang, X.; Song, M.; Li, J. W.; He, F.; Yang, H. P.; Zhang, J.; Wang, D. L. Tuning the atomic configuration of Co-N-C electrocatalyst enables highly-selective H2O2 production in acidic media. Appl. Catal. B:Environ. 2022, 310, 121312.

    CAS  Google Scholar 

  104. Xu, H.; Zhang, S. B.; Geng, J.; Wang, G. Z.; Zhang, H. M. Cobalt single atom catalysts for the efficient electrosynthesis of hydrogen peroxide. Inorg. Chem. Front. 2021, 8, 2829–2834.

    CAS  Google Scholar 

  105. Suk, M.; Chung, M. W.; Han, M. H.; Oh, H. S.; Choi, C. H. Selective H2O2 production on surface-oxidized metal-nitrogen-carbon electrocatalysts. Catal. Today 2021, 359, 99–105.

    CAS  Google Scholar 

  106. Li, X. G.; Tang, S. S.; Dou, S.; Fan, H. J.; Choksi, T. S.; Wang, X. Molecule confined isolated metal sites enable the electrocatalytic synthesis of hydrogen peroxide. Adv. Mater. 2022, 34, 2104891.

    CAS  Google Scholar 

  107. Lin, R. J.; Kang, L. Q.; Lisowska, K.; He, W. Y.; Zhao, S. Y.; Hayama, S.; Hutchings, G. J.; Brett, D. J. L.; Corà, F.; Parkin, I. P. et al. Approaching theoretical performances of electrocatalytic hydrogen peroxide generation by cobalt-nitrogen moieties. Angew. Chem., Int. Ed. 2023, 62, e202301433.

    CAS  Google Scholar 

  108. Li, B. Q.; Zhao, C. X.; Liu, J. N.; Zhang, Q. Electrosynthesis of hydrogen peroxide synergistically catalyzed by atomic Co-Nx-C sites and oxygen functional groups in noble-metal-free electrocatalysts. Adv. Mater. 2019, 31, 1808173.

    Google Scholar 

  109. Kim, J. H.; Shin, D.; Lee, J.; Baek, D. S.; Shin, T. J.; Kim, Y. T.; Jeong, H. Y.; Kwak, J. H.; Kim, H.; Joo, S. H. A general strategy to atomically dispersed precious metal catalysts for unravelling their catalytic trends for oxygen reduction reaction. ACS Nano 2020, 14, 1990–2001.

    CAS  Google Scholar 

  110. Shen, R. A.; Chen, W. X.; Peng, Q.; Lu, S. Q.; Zheng, L. R.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J. T.; Zhuang, Z. B. et al. High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem 2019, 5, 2099–2110.

    CAS  Google Scholar 

  111. Shin, S.; Kim, J.; Park, S.; Kim, H. E.; Sung, Y. E.; Lee, H. Changes in the oxidation state of Pt single-atom catalysts upon removal of chloride ligands and their effect for electrochemical reactions. Chem. Commun. (Camb.) 2019, 55, 6389–6392.

    CAS  Google Scholar 

  112. Fang, Q.-J.; Pan, J.-k.; Zhang, W.; Sun, F.-l.; Chen, W.-x.; Yu, Y.-f.; Hu, A.-F.; Zhuang, G.-l. Cooperatively interface role of surface atoms and aqueous media on single atom catalytic property for H2O2 synthesis. J. Colloid Interface Sci. 2022, 617, 752–763.

    CAS  Google Scholar 

  113. Kuznetsov, D. A.; Chen, Z.; Abdala, P. M.; Safonova, O. V.; Fedorov, A.; Muller, C. R. Single-Atom-Substituted Mo2CTx.:Fe-Layered Carbide for Selective Oxygen Reduction to Hydrogen Peroxide: Tracking the Evolution of the MXene Phase. J. Am. Chem. Soc. 2021, 143, 5771–5778.

    CAS  Google Scholar 

  114. Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem., Int. Ed. 2016, 55, 2058–2062.

    CAS  Google Scholar 

  115. Kim, H. E.; Lee, I. H.; Cho, J.; Shin, S.; Ham, H. C.; Kim, J. Y.; Lee, H. Palladium single-atom catalysts supported on C@C3N4 for electrochemical reactions. ChemElectroChem 2019, 6, 4757–4764.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Special Program on the Promotion of Graduate Research Level and Innovation Ability of Bei**g Institute of Technology 2022 (No. 2022YCXZ003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **n Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Chen, P., Sun, Z. et al. The atomic interface effect of single atom catalysts for electrochemical hydrogen peroxide production. Nano Res. 16, 10724–10741 (2023). https://doi.org/10.1007/s12274-023-5823-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5823-7

Keywords

Navigation