Log in

Rational design and synergistic effect of ultrafine Ag nanodots decorated fish-scale-like Zn nanoleaves for highly selective electrochemical CO2 reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The electrocatalytic CO2 reduction reaction (CO2RR) is regarded as a promising route for renewable energy conversion and storage, but its development is limited by the high overpotential and low stability and selectivity of electrocatalysts. Moreover, it is complicated to accurately adjust the nanostructure of electrocatalysts, which impacts repeatability. Herein, we propose the rational design and controlled preparation of ultrafine Ag nanodots decorated fish-scale-like Zn nanoleaves (Ag-NDs/Zn-NLs) for highly selective electrocatalytic CO2 reduction. The Ag-NDs/Zn-NLs can be in-situ grown on copper foil with simple electrodeposition and replacement reactions. Benefiting from the coordination and synergistic effect of Zn and Ag species, the reconstruction of Zn surface and the agglomeration of Ag-NDs are efficiently prevented, bringing high activity and durable electrocatalytic stability for CO2-to-CO conversion. The Faradaic efficiency for CO production reaches 85.2% at a moderate applied potential of −1.0 V vs. reversible hydrogen electrode (RHE). This study provides a promising approach for controlling the catalytic activity and selectivity of CO2RR through the structural adjustment and decoration of transition metal based nanocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pao, H. T.; Chen, C. C. Decoupling strategies: CO2 emissions, energy resources, and economic growth in the Group of Twenty. J. Clean. Prod. 2019, 206, 907–919.

    CAS  Google Scholar 

  2. Li, X.; Wen, J. Q.; Low, J.; Fang, Y. P.; Yu, J. G. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci. China Mater. 2014, 57, 70–100.

    Google Scholar 

  3. Takata, T.; Pan, C. S.; Domen, K. Design and development of oxynitride photocatalysts for overall water splitting under visible light irradiation. ChemElectroChem 2016, 3, 31–37.

    CAS  Google Scholar 

  4. Zhang, W. J.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Wang, Y. R.; Xue, X. L.; Chen, R. P.; Yang, S. Y.; **, Z. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 2018, 5, 1700275.

    Google Scholar 

  5. Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.

    CAS  Google Scholar 

  6. Zang, G. Y.; Sun, P. P.; Elgowainy, A. A.; Bafana, A.; Wang, M. Performance and cost analysis of liquid fuel production from H2 and CO2 based on the Fischer—Tropsch process. J. CO2 Util. 2021, 46, 101459.

    CAS  Google Scholar 

  7. Zhao, Z. B.; Zhang, J. G.; Lei, M.; Lum, Y. Reviewing the impact of halides on electrochemical CO2 reduction. Nano Res. Energy, in press, https://doi.org/10.26599/NRE.2023.9120044.

  8. Zhao, R. B.; Ding, P.; Wei, P. P.; Zhang, L. C.; Liu, Q.; Luo, Y. L.; Li, T. S.; Lu, S. Y.; Shi, X. F.; Gao, S. Y. et al. Recent progress in electrocatalytic methanation of CO2 at ambient conditions. Adv. Funct. Mater. 2021, 31, 2009449.

    CAS  Google Scholar 

  9. Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, e9120021.

    Google Scholar 

  10. Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

    CAS  Google Scholar 

  11. Lee, C. W.; Cho, N. H.; Im, S. W.; Jee, M. S.; Hwang, Y. J.; Min, B. K.; Nam, K. T. New challenges of electrokinetic studies in investigating the reaction mechanism of electrochemical CO2 reduction. J. Mater. Chem. A 2018, 6, 14043–14057.

    CAS  Google Scholar 

  12. Zhang, L.; Zhao, Z. J.; Wang, T.; Gong, J. L. Nano-designed semiconductors for electro- and photoelectro-catalytic conversion of carbon dioxide. Chem. Soc. Rev. 2018, 47, 5423–5443.

    CAS  Google Scholar 

  13. Kibria, G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Electrochemical CO2 reduction into chemical feedstocks: From mechanistic electrocatalysis models to system design. Adv. Mater. 2019, 31, 1807166.

    Google Scholar 

  14. Shi, R.; Guo, J. H.; Zhang, X. R.; Waterhouse, G. I. N.; Han, Z. J.; Zhao, Y. X.; Shang, L.; Zhou, C.; Jiang, L.; Zhang, T. R. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat. Commun. 2020, 11, 3028.

    CAS  Google Scholar 

  15. Sun, D. L.; Xu, X. M.; Qin, Y. L.; Jiang, S. P.; Shao, Z. P. Rational design of Ag-based catalysts for the electrochemical CO2 reduction to CO: A review. ChemSusChem 2020, 13, 39–58.

    CAS  Google Scholar 

  16. Gao, D. F.; Zhou, H.; Cai, F.; Wang, J. G.; Wang, G. X.; Bao, X. H. Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catal. 2018, 8, 1510–1519.

    CAS  Google Scholar 

  17. Luo, W.; Zhang, Q.; Zhang, J.; Moioli, E.; Zhao, K.; Züttel, A. Electrochemical reconstruction of ZnO for selective reduction of CO2 to CO. Appl. Catal. B: Environ. 2020, 273, 119060.

    CAS  Google Scholar 

  18. Hatsukade, T.; Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Feaster, J. T.; Jongerius, A. L.; Hahn, C.; Jaramillo, T. F. Carbon dioxide electroreduction using a silver-zinc alloy. Energy Technol. 2017, 5, 955–961.

    CAS  Google Scholar 

  19. Park, H.; Choi, J.; Kim, H.; Hwang, E.; Ha, D. H.; Ahn, S. H.; Kim, S. K. AgIn dendrite catalysts for electrochemical reduction of CO2 to CO. Appl. Catal. B: Environ. 2017, 219, 123–131.

    CAS  Google Scholar 

  20. Lee, H.; Kim, S. K.; Ahn, S. H. Electrochemical preparation of Ag/Cu and Au/Cu foams for electrochemical conversion of CO2 to CO. J. Ind. Eng. Chem. 2017, 54, 218–225.

    CAS  Google Scholar 

  21. **ao, J.; Gao, M. R.; Liu, S. B.; Luo, J. L. Hexagonal Zn nanoplates enclosed by Zn (100) and Zn (002) facets for highly selective CO2 electroreduction to CO. ACS Appl. Mater. Interfaces 2020, 12, 31431–31438.

    CAS  Google Scholar 

  22. Luo, W.; Zhang, J.; Li, M.; Zuttel, A. Boosting CO production in electrocatalytic CO2 reduction on highly porous Zn catalysts. ACS Catal. 2019, 9, 3783–3791.

    CAS  Google Scholar 

  23. Lu, Y.; Han, B.; Tian, C. C.; Wu, J.; Geng, D. S.; Wang, D. W. Efficient electrocatalytic reduction of CO2 to CO on an electrodeposited Zn porous network. Electrochem. Commun. 2018, 97, 87–90.

    CAS  Google Scholar 

  24. Rosen, J.; Hutchings, G. S.; Lu, Q.; Forest, R. V.; Moore, A.; Jiao, F. Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction. ACS Catal. 2015, 5, 4586–4591.

    CAS  Google Scholar 

  25. Jeon, H. S.; Sinev, I.; Scholten, F.; Divins, N. J.; Zegkinoglou, I.; Pielsticker, L.; Cuenya, B. R. Operando evolution of the structure and oxidation state of size-controlled Zn nanoparticles during CO2 electroreduction. J. Am. Chem. Soc. 2018, 140, 9383–9386.

    CAS  Google Scholar 

  26. **ang, Q.; Li, F.; Wang, J. L.; Chen, W. L.; Miao, Q. S.; Zhang, Q. F.; Tao, P.; Song, C. Y.; Shang, W.; Zhu, H. et al. Heterostructure of ZnO nanosheets/Zn with a highly enhanced edge surface for efficient CO2 electrochemical reduction to CO. ACS Appl. Mater. Interfaces 2021, 13, 10837–10844.

    CAS  Google Scholar 

  27. Yu, Q.; Meng, X. G.; Shi, L.; Liu, H. M.; Ye, J. H. Superfine Ag nanoparticle decorated Zn nanoplates for the active and selective electrocatalytic reduction of CO2 to CO. Chem. Commun. 2016, 52, 14105–14108.

    CAS  Google Scholar 

  28. Zhang, Z.; Wen, G. B.; Luo, D.; Ren, B. H.; Zhu, Y. F.; Gao, R.; Dou, H. Z.; Sun, G. R.; Feng, M.; Bai, Z. Y. et al. “Two ships in a bottle” design for Zn-Ag-O catalyst enabling selective and long-lasting CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 6855–6864.

    CAS  Google Scholar 

  29. Mou, S. Y.; Li, Y. H.; Yue, L. C.; Liang, J.; Luo, Y. L.; Liu, Q.; Li, T. S.; Lu, S. Y.; Asiri, A. M.; **ong, X. L. et al. Cu2Sb decorated Cu nanowire arrays for selective electrocatalytic CO2 to CO conversion. Nano Res. 2021, 14, 2831–2836.

    CAS  Google Scholar 

  30. Ji, L.; Li, L.; Ji, X. Q.; Zhang, Y.; Mou, S. Y.; Wu, T. W.; Liu, Q.; Li, B. H.; Zhu, X. J.; Luo, Y. L. et al. Highly selective electrochemical reduction of CO2 to alcohols on an FeP nanoarray. Angew. Chem., Int. Ed. 2020, 59, 758–762.

    CAS  Google Scholar 

  31. Tan, W. K.; Razak, K. A.; Ibrahim, K.; Lockman, Z. Oxidation of etched Zn foil for the formation of ZnO nanostructure. J. Alloys Compd. 2011, 509, 6806–6811.

    CAS  Google Scholar 

  32. Han, K.; Ngene, P.; De Jongh, P. Structure dependent product selectivity for CO2 electroreduction on ZnO derived catalysts. ChemCatChem 2021, 13, 1998–2004.

    CAS  Google Scholar 

  33. Guo, W.; Shim, K.; Kim, Y. T. Ag layer deposited on Zn by physical vapor deposition with enhanced CO selectivity for electrochemical CO2 reduction. Appl. Surf. Sci. 2020, 526, 146651.

    CAS  Google Scholar 

  34. Zhang, W. J.; Xu, C. H.; Hu, Y.; Yang, S. Y.; Ma, L. B.; Wang, L.; Zhao, P. Y.; Wang, C. X.; Ma, J.; **, Z. Electronic and geometric structure engineering of bicontinuous porous Ag-Cu nanoarchitectures for realizing selectivity-tunable electrochemical CO2 reduction. Nano Energy 2020, 73, 104796.

    CAS  Google Scholar 

  35. Sun, H. P.; Pan, X. Q. Microstructure of ZnO shell on Zn nanoparticles. J. Mater. Res. 2004, 19, 3062–3067.

    CAS  Google Scholar 

  36. Nam, D. H.; Kim, R. H.; Han, D. W.; Kim, J. H.; Kwon, H. S. Effects of (NH4)2SO4 and BTA on the nanostructure of copper foam prepared by electrodeposition. Electrochim. Acta 2011, 56, 9397–9405.

    CAS  Google Scholar 

  37. Kilic, M. S.; Bazant, M. Z.; Ajdari, A. Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys. Rev. E 2007, 75, 021502.

    Google Scholar 

  38. Zhang, T. T.; Zhong, H. X.; Qiu, Y. L.; Li, X. F.; Zhang, H. M. Zn electrode with a layer of nanoparticles for selective electroreduction of CO2 to formate in aqueous solutions. J. Mater. Chem. A 2016, 4, 16670–16676.

    CAS  Google Scholar 

  39. Li, M. R.; Idros, M. N.; Wu, Y. M.; Burdyny, T.; Garg, S.; Zhao, X. S.; Wang, G.; Rufford, T. E. The role of electrode wettability in electrochemical reduction of carbon dioxide. J. Mater. Chem. A 2021, 9, 19369–19409.

    CAS  Google Scholar 

  40. Dunwell, M.; Luc, W.; Yan, Y. S.; Jiao, F.; Xu, B. J. Understanding surface-mediated electrochemical reactions: CO2 reduction and beyond. ACS Catal. 2018, 8, 8121–8129.

    CAS  Google Scholar 

  41. Won, D. H.; Shin, H.; Koh, J.; Chung, J.; Lee, H. S.; Kim, H.; Woo, S. I. Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst. Angew. Chem., Int. Ed. 2016, 55, 9297–9300.

    CAS  Google Scholar 

  42. Gao, F. Y.; Bao, R. C.; Gao, M. R.; Yu, S. H. Electrochemical CO2-to-CO conversion: Electrocatalysts, electrolytes, and electrolyzers. J. Mater. Chem. A 2020, 8, 15458–15478.

    CAS  Google Scholar 

  43. Pan, S. F.; Ke, X. X.; Wang, T. Y.; Liu, Q.; Zhong, L. B.; Zheng, Y. M. Synthesis of silver nanoparticles embedded electrospun PAN nanofiber thin-film composite forward osmosis membrane to enhance performance and antimicrobial activity. Ind. Eng. Chem. Res. 2019, 58, 984–993.

    CAS  Google Scholar 

  44. Liu, X.; Qi, S. R.; Li, Y.; Yang, L.; Cao, B.; Tang, C. Y. Y. Synthesis and characterization of novel antibacterial silver nanocomposite nanofiltration and forward osmosis membranes based on layer-by-layer assembly. Water Res. 2013, 47, 3081–3092.

    CAS  Google Scholar 

  45. Girón, J. V. M.; Vico, R. V.; Maggio, B.; Zelaya, E.; Rubert, A.; Benítez, G.; Carro, P.; Salvarezza, R. C.; Vela, M. E. Role of the cap** agent in the interaction of hydrophilic Ag nanoparticles with DMPC as a model biomembrane. Environ. Sci.: Nano 2016, 3, 462–472.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the supports by the National Key Research and Development Program of China (No. 2017YFA0208200), the National Natural Science Foundation of China (Nos. 22022505 and 21872069), the Fundamental Research Funds for the Central Universities (Nos. 020514380266, 020514380272, and 020514380274), the Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province (No. BK20220008), the Nan**g International Collaboration Research Program (No. 202201007 and 2022SX00000955), and the Suzhou Gusu Leading Talent Program of Science and Technology Innovation and Entrepreneurship in Wujiang District (No. ZXL2021273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong **.

Electronic Supplementary Material

12274_2023_5596_MOESM1_ESM.pdf

Rational design and synergistic effect of ultrafine Ag nanodots decorated fish-scale-like Zn nanoleaves for highly selective electrochemical CO2 reduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Jiang, M., Wang, M. et al. Rational design and synergistic effect of ultrafine Ag nanodots decorated fish-scale-like Zn nanoleaves for highly selective electrochemical CO2 reduction. Nano Res. 16, 8910–8918 (2023). https://doi.org/10.1007/s12274-023-5596-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5596-z

Keywords

Navigation