Log in

Platelet membrane-coated C-TiO2 hollow nanospheres for combined sonodynamic and alkyl-radical cancer therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The therapeutic efficiency of sonodynamic therapy (SDT) mainly depends on the presence of oxygen (O2) to generate harmful reactive oxygen species (ROS); thus, the hypoxic tumor microenvironment significantly limits the efficacy of SDT. Therefore, the development of oxygen-independent free radical generators and associated combination therapy tactics can be a promising field to facilitate the anticancer capability of SDT. In this study, a biomimetic drug delivery system (C-TiO2/AIPH@PM) composed of an alkyl-radical generator (2,2′-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride, AIPH)-loaded C-TiO2 hollow nanoshells (HNSs) as the inner cores, and a platelet membrane (PM) as the outer shells is successfully prepared for synergistic SDT and oxygen-independent alkyl-radical therapy. The PM encapsulation can significantly prolong the blood circulation time of C-TiO2/AIPH@PM compared with C-TiO2/AIPH while enabling C-TiO2/AIPH@PM to achieve tumor targeting. C-TiO2/AIPH@PM can efficiently produce ROS and alkyl radicals, which can achieve a more thorough tumor eradication regardless of the normoxic or hypoxic conditions. Furthermore, the generation of these radicals improves the efficiency of SDT. In addition, nitrogen (N2) produced due to the decomposition of AIPH enhances the acoustic cavitation effect and lowers the cavitation threshold, thereby enhancing the penetration of C-TiO2/AIPH@PM at the tumor sites. Both in vitro and in vivo experiments demonstrate that C-TiO2/AIPH@PM possesses good biosafety, ultrasound imaging performance, and excellent anticancer efficacy. This study provides a new strategy to achieve oxygen-independent free radical production and enhance therapeutic efficacy by combining SDT and free radical therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meng, X. Q.; Li, D. D.; Chen, L.; He, H.; Wang, Q.; Hong, C. Y.; He, J. Y.; Gao, X. F.; Yang, Y. L.; Jiang, B. et al. High-performance self-cascade pyrite nanozymes for apoptosis-ferroptosis synergistic tumor therapy. ACS Nano 2021, 15, 5735–5751.

    Article  CAS  Google Scholar 

  2. Yan, J. Q.; Chen, J.; Zhang, N.; Yang, Y. D.; Zhu, W. W.; Li, L.; He, B. Mitochondria-targeted tetrahedral DNA nanostructures for doxorubicin delivery and enhancement of apoptosis. J. Mater. Chem. B 2020, 8, 492–503.

    Article  CAS  Google Scholar 

  3. Yan, J. Q.; Zhang, N.; Zhang, Z. Z.; Zhu, W. W.; Li, B.; Li, L.; Pu, Y. J.; He, B. Redox-responsive polyethyleneimine/tetrahedron DNA/doxorubicin nanocomplexes for deep cell/tissue penetration to overcome multidrug resistance. J. Control. Release 2021, 329, 36–49.

    Article  CAS  Google Scholar 

  4. Zhang, Y.; Zhang, X. Q.; Yang, H. C.; Yu, L.; Xu, Y. J.; Sharma, A.; Yin, P.; Li, X. Y.; Kim, J. S.; Sun, Y. Advanced biotechnology-assisted precise sonodynamic therapy. Chem. Soc. Rev. 2021, 50, 11227–11248.

    Article  CAS  Google Scholar 

  5. Wang, H.; Guo, J. X.; Lin, W.; Fu, Z.; Ji, X. R.; Yu, B.; Lu, M.; Cui, W. G.; Deng, L. F.; Engle, J. W. et al. Open-shell nanosensitizers for glutathione responsive cancer sonodynamic therapy. Adv. Mater. 2022, 34, 2110283.

    Article  CAS  Google Scholar 

  6. Zhu, D. M.; Chen, H.; Huang, C. Y.; Li, G. X.; Wang, X.; Jiang, W.; Fan, K. L. H2O2 self-producing single-atom nanozyme hydrogels as light-controlled oxidative stress amplifier for enhanced synergistic therapy by transforming “cold” tumors. Adv. Funct. Mater. 2022, 33, 2110268.

    Article  Google Scholar 

  7. Fan, Q.; He, Z. M.; **ong, J. X.; Chao, J. Smart drug delivery systems based on DNA nanotechnology. ChemPlusChem 2022, 87, e202100548.

    Article  CAS  Google Scholar 

  8. Wang, X. W.; Zhong, X. Y.; Li, J. X.; Liu, Z.; Cheng, L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem. Soc. Rev. 2021, 50, 8669–8742.

    Article  CAS  Google Scholar 

  9. Zhang, R. F.; Chen, L.; Liang, Q.; **, J. Q.; Zhao, H. Q.; **, Y. L.; Gao, X. F.; Yan, X. Y.; Gao, L. Z.; Fan, K. L. Unveiling the active sites on ferrihydrite with apparent catalase-like activity for potentiating radiotherapy. Nano Today 2021, 41, 101317.

    Article  CAS  Google Scholar 

  10. Tang, G. H.; He, J. Y.; Liu, J. W.; Yan, X. Y.; Fan, K. L. Nanozyme for tumor therapy: Surface modification matters. Exploration 2021, 1, 75–89.

    Article  Google Scholar 

  11. Yang, N. L.; Gong, F.; Cheng, L.; Lei, H. L.; Li, W.; Sun, Z. B.; Ni, C. F.; Wang, Z. H.; Liu, Z. Biodegradable magnesium alloy with eddy thermal effect for effective and accurate magnetic hyperthermia ablation of tumors. Natl. Sci. Rev. 2021, 8, nwaa122.

    Article  CAS  Google Scholar 

  12. Xu, S. Y.; Shi, X. X.; Ren, E.; Zhang, J. Z.; Gao, X.; Mu, D.; Liu, C.; Liu, G. Genetically engineered nanohyaluronidase vesicles: A smart sonotheranostic platform for enhancing cargo penetration of solid tumors. Adv. Funct. Mater. 2022, 32, 2112989.

    Article  CAS  Google Scholar 

  13. Ju, Y. Y.; Shi, X. X.; Xu, S. Y.; Ma, X. H.; Wei, R. J.; Hou, H.; Chu, C. C.; Sun, D.; Liu, G.; Tan, Y. Z. Atomically precise water-soluble graphene quantum dot for cancer sonodynamic therapy. Adv. Sci., in press, https://doi.org/10.1002/advs.202105034.

  14. Wang, M. F.; Hou, Z. Y.; Liu, S. N.; Liang, S.; Ding, B. B.; Zhao, Y. J.; Chang, M. Y.; Han, G.; Al Kheraif, A. A.; Lin, J. A multifunctional nanovaccine based on l-arginine-loaded black mesoporous titania: Ultrasound-triggered synergistic cancer sonodynamic therapy/gas therapy/immunotherapy with remarkably enhanced efficacy. Small 2021, 17, 2005728.

    Article  CAS  Google Scholar 

  15. Zhu, D. M.; Ling, R. Y.; Chen, H.; Lyu, M.; Qian, H. S.; Wu, K. L.; Li, G. X.; Wang, X. W. Biomimetic copper single-atom nanozyme system for self-enhanced nanocatalytic tumor therapy. Nano Res., in press, https://doi.org/10.1007/s12274-022-4359-6.

  16. Zhu, D. M.; Zhang, T. F.; Li, Y.; Huang, C. Y.; Suo, M.; **a, L. G.; Xu, Y. H.; Li, G. X.; Tang, B. Z. Tumor-derived exosomes codelivering aggregation-induced emission luminogens and proton pump inhibitors for tumor glutamine starvation therapy and enhanced type-I photodynamic therapy. Biomaterials 2022, 283, 121462.

    Article  CAS  Google Scholar 

  17. Fan, K. L.; **, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.

    Article  Google Scholar 

  18. Pan, X. T.; Wang, W. W.; Huang, Z. J.; Liu, S.; Guo, J.; Zhang, F. R.; Yuan, H. J.; Li, X.; Liu, F. Y.; Liu, H. Y. MOF-derived double-layer hollow nanoparticles with oxygen generation ability for multimodal imaging-guided sonodynamic therapy. Angew. Chem. 2020, 132, 13659–13663.

    Article  Google Scholar 

  19. Pan, X. T.; Bai, L. X.; Wang, H.; Wu, Q. Y.; Wang, H. Y.; Liu, S.; Xu, B. L.; Shi, X. H.; Liu, H. Y. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Adv. Mater. 2018, 30, 1800180.

    Article  Google Scholar 

  20. Wang, W. W.; Pan, X. T.; Yang, H. L.; Wang, H.; Wu, Q. Y.; Zheng, L. R.; Xu, B. L.; Wang, J. H.; Shi, X. H.; Bai, F. et al. Bioactive metal-organic frameworks with specific metal-nitrogen (M-N) active sites for efficient sonodynamic tumor therapy. ACS Nano 2021, 15, 20003–20012.

    Article  CAS  Google Scholar 

  21. Zhu, J. Y.; Ouyang, A.; Shen, Z. L.; Pan, Z. H.; Banerjee, S.; Zhang, Q. L.; Chen, Y. T.; Zhang, P. Y. Sonodynamic cancer therapy by novel iridium-gold nanoassemblies. Chin. Chem. Lett. 2022, 1907–1912.

  22. Zhang, H. Y.; Pan, X. T.; Wu, Q. Y.; Guo, J.; Wang, C. H.; Liu, H. Y. Manganese carbonate nanoparticles-mediated mitochondrial dysfunction for enhanced sonodynamic therapy. Exploration 2021, 1, 20210010.

    Article  Google Scholar 

  23. Yue, W. W.; Chen, L.; Yu, L. D.; Zhou, B. G.; Yin, H. H.; Ren, W. W.; Liu, C.; Guo, L. H.; Zhang, Y. F.; Sun, L. P. et al. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat. Commun. 2019, 10, 2025.

    Article  Google Scholar 

  24. Guan, X.; Yin, H. H.; Xu, X. H.; Xu, G.; Zhang, Y.; Zhou, B. G.; Yue, W. W.; Liu, C.; Sun, L. P.; Xu, H. X. et al. Tumor metabolism-engineered composite nanoplatforms potentiate sonodynamic therapy via resha** tumor microenvironment and facilitating electron-hole pairs’ separation. Adv. Funct. Mater. 2020, 30, 2000326.

    Article  CAS  Google Scholar 

  25. Yin, Y. F.; Jiang, X. W.; Sun, L. P.; Li, H. Y.; Su, C. X.; Zhang, Y.; Xu, G.; Li, X. L.; Zhao, C. K.; Chen, Y. et al. Continuous inertial cavitation evokes massive ROS for reinforcing sonodynamic therapy and immunogenic cell death against breast carcinoma. Nano Today 2021, 36, 101009.

    Article  CAS  Google Scholar 

  26. Wang, X. W.; Wang, X. Y.; Yue, Q. F.; Xu, H. Z.; Zhong, X. Y.; Sun, L. N.; Li, G. Q.; Gong, Y. H.; Yang, N. L.; Wang, Z. H. et al. Liquid exfoliation of TiN nanodots as novel sonosensitizers for photothermal-enhanced sonodynamic therapy against cancer. Nano Today 2021, 39, 101170.

    Article  CAS  Google Scholar 

  27. Sun, L. N.; Cao, Y.; Lu, Z. Z.; Ding, P.; Wang, Z. L.; Ma, F. S.; Wang, Z.; Pei, R. J. A hypoxia-irrelevant Fe-doped multivalent manganese oxide sonosensitizer via a vacancy engineering strategy for enhanced sonodynamic therapy. Nano Today 2022, 43, 101434.

    Article  CAS  Google Scholar 

  28. Wu, T. T.; Liu, Y.; Cao, Y.; Liu, Z. H. Engineering macrophage exosome disguised biodegradable nanoplatform for enhanced sonodynamic therapy of glioblastoma. Adv. Mater. 2022, 34, 2110364.

    Article  CAS  Google Scholar 

  29. Gong, C. C.; Zhao, J. M.; Meng, X. D.; Yang, Z.; Dong, H. F. Engineering Cu-CuFe2O4 nanoenzyme for hypoxia-relief and GSH-depletion enhanced chemodynamic/sonodynamic therapy. Chem. Eng. J. 2022, 435, 135083.

    Article  CAS  Google Scholar 

  30. Yang, K. K.; Yue, L. D.; Yu, G. C.; Rao, L.; Tian, R.; Wei, J. W.; Yang, Z. Q.; Sun, C.; Zhang, X. J.; Xu, M. Z. et al. A hypoxia responsive nanoassembly for tumor specific oxygenation and enhanced sonodynamic therapy. Biomaterials 2021, 275, 120822.

    Article  CAS  Google Scholar 

  31. Zhu, P.; Chen, Y.; Shi, J. L. Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation. ACS Nano 2018, 12, 3780–3795.

    Article  CAS  Google Scholar 

  32. Guo, Q. L.; Dai, X. L.; Yin, M. Y.; Cheng, H. W.; Qian, H. S.; Wang, H.; Zhu, D. M.; Wang, X. W. Nanosensitizers for sonodynamic therapy for glioblastoma multiforme: Current progress and future perspectives. Military Med. Res. 2022, 9, 26.

    Article  CAS  Google Scholar 

  33. Huang, D. Q.; Zhao, C.; Wen, B. J.; Fu, X.; Shang, L. R.; Kong, W. T.; Zhao, Y. J. Oxygen-carrying microfluidic microcapsules for enhancing chemo-sonodynamic therapy on patient-derived tumor organoid models. Chem. Eng. J. 2022, 435, 134871.

    Article  CAS  Google Scholar 

  34. Lin, X. H.; Qiu, Y.; Song, L.; Chen, S.; Chen, X. F.; Huang, G. M.; Song, J. B.; Chen, X. Y.; Yang, H. H. Ultrasound activation of liposomes for enhanced ultrasound imaging and synergistic gas and sonodynamic cancer therapy. Nanoscale Horiz. 2019, 4, 747–756.

    Article  CAS  Google Scholar 

  35. Sun, Y.; Cao, J.; Wang, X.; Zhang, C.; Luo, J. L.; Zeng, Y. Q.; Zhang, C.; Li, Q. Y.; Zhang, Y.; Xu, W. et al. Hypoxia-adapted sono-chemodynamic treatment of orthotopic pancreatic carcinoma using copper metal-organic frameworks loaded with an ultrasound-induced free radical initiator. ACS Appl. Mater. Interfaces 2021, 13, 38114–38126.

    Article  CAS  Google Scholar 

  36. Ye, J. M.; Fu, Q. R.; Liu, L. T.; Chen, L. L.; Zhang, X.; Li, Q. Q.; Li, Z.; Su, L. C.; Zhu, R.; Song, J. B. et al. Ultrasound-propelled Janus Au NR-mSiO2 nanomotor for NIR-II photoacoustic imaging guided sonodynamic-gas therapy of large tumors. Sci. China Chem. 2021, 64, 2218–2229.

    Article  CAS  Google Scholar 

  37. Zhang, C.; **n, L.; Li, J.; Cao, J.; Sun, Y.; Wang, X.; Luo, J. L.; Zeng, Y. Q.; Li, Q. Y.; Zhang, Y. et al. Metal-organic framework (MOF)-based ultrasound-responsive dual-sonosensitizer nanoplatform for hypoxic cancer therapy. Adv. Healthcare Mater. 2022, 11, 2101946.

    Article  CAS  Google Scholar 

  38. Shen, S.; Zhu, C. L.; Huo, D.; Yang, M. X.; Xue, J. J.; **a, Y. N. A hybrid nanomaterial for the controlled generation of free radicals and oxidative destruction of hypoxic cancer cells. Angew. Chem., Int. Ed. 2017, 56, 8801–8804.

    Article  CAS  Google Scholar 

  39. Huang, G. M.; Qiu, Y.; Yang, F. F.; **e, J. G.; Chen, X.; Wang, L. L.; Yang, H. H. Magnetothermally triggered free-radical generation for deep-seated tumor treatment. Nano Lett. 2021, 21, 2926–2931.

    Article  CAS  Google Scholar 

  40. Zhang, Y.; Wang, Q.; Ji, Y. S.; Fan, L. Y.; Ding, B. B.; Lin, J.; Wang, L. L. Mitochondrial targeted melanin@mSiO2 yolk-shell nanostructures for NIR- II -driven photo-thermal-dynamic/immunotherapy. Chem. Eng. J. 2022, 435, 134869.

    Article  CAS  Google Scholar 

  41. Li, Y. C.; Yu, H. L.; Ren, J. J.; Lu, G. J.; Cao, Y.; Xu, Z. G.; Kang, Y. J.; Xue, P. Acidic TME-responsive nano-Bi2Se3@MnCaP as a NIR-II-triggered free radical generator for hypoxia-irrelevant phototherapy with high specificity and immunogenicity. Small 2022, 18, 2104302.

    Article  CAS  Google Scholar 

  42. Cao, Y.; Wu, T. T.; Dai, W. H.; Dong, H. F.; Zhang, X. J. TiO2 nanosheets with the Au nanocrystal-decorated edge for mitochondria-targeting enhanced sonodynamic therapy. Chem. Mater. 2019, 31, 9105–9114.

    Article  CAS  Google Scholar 

  43. Liang, S.; Deng, X. R.; Xu, G. Y.; **ao, X.; Wang, M. F.; Guo, X. S.; Ma, P. A.; Cheng, Z. Y.; Zhang, D.; Lin, J. A novel Pt-TiO2 heterostructure with oxygen-deficient layer as bilaterally enhanced sonosensitizer for synergistic chemo-sonodynamic cancer therapy. Adv. Funct. Mater. 2020, 30, 1908598.

    Article  CAS  Google Scholar 

  44. Wang, X. W.; Wang, X. Y.; Zhong, X. Y.; Li, G. Q.; Yang, Z. J.; Gong, Y. H.; Liu, Z.; Cheng, L. V-TiO2 nanospindles with regulating tumor microenvironment performance for enhanced sonodynamic cancer therapy. Appl. Phys. Rev. 2020, 7, 041411.

    Article  CAS  Google Scholar 

  45. Wang, X. W.; Zhong, X. Y.; Cheng, L. Titanium-based nanomaterials for cancer theranostics. Coord. Chem. Rev. 2021, 430, 213662.

    Article  CAS  Google Scholar 

  46. Geng, B. J.; Xu, S.; Li, P.; Li, X. K.; Fang, F. L.; Pan, D. Y.; Shen, L. X. Platinum crosslinked carbon dot@TiO2−x p–n junctions for relapse-free sonodynamic tumor eradication via high-yield ROS and GSH depletion. Small 2022, 18, 2103528.

    Article  CAS  Google Scholar 

  47. Han, X. X.; Huang, J.; **g, X. X.; Yang, D. Y.; Lin, H.; Wang, Z. G.; Li, P.; Chen, Y. Oxygen-deficient black titania for synergistic/enhanced sonodynamic and photoinduced cancer therapy at near infrared-II biowindow. ACS Nano 2018, 12, 4545–4555.

    Article  CAS  Google Scholar 

  48. Wang, X. W.; Zhong, X. Y.; Bai, L. X.; Xu, J.; Gong, F.; Dong, Z. L.; Yang, Z. J.; Zeng, Z. J.; Liu, Z.; Cheng, L. Ultrafine titanium monoxide (TiO1+x) nanorods for enhanced sonodynamic therapy. J. Am. Chem. Soc. 2020, 142, 6527–6537.

    Article  CAS  Google Scholar 

  49. Jiang, Q.; Wang, K.; Zhang, X. Y.; Ouyang, B. S.; Liu, H. X.; Pang, Z. Q.; Yang, W. L. Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy. Small 2020, 16, 2001704.

    Article  CAS  Google Scholar 

  50. Li, B. Z.; Chu, T. J.; Wei, J. Y.; Zhang, Y. L.; Qi, F. L.; Lu, Z. F.; Gao, C.; Zhang, T. J.; Jiang, E. S.; Xu, J. C. et al. Platelet-membrane-coated nanoparticles enable vascular disrupting agent combining anti-angiogenic drug for improved tumor vessel impairment. Nano Lett. 2021, 21, 2588–2595.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research fund of Anhui Institute of Translation Medicine (No. 2021zhyx-C49), the Foundation of Anhui Medical University (No. 2021xkj030), the Anhui Provincial Natural Science Foundation (No. 2208085QC81), the Basic and Clinical Cooperative Research and Promotion Program of Anhui Medical University (No. 2021xkjT028), and Grants for Scientific Research of BSKY from Anhui Medical University (No. 1406012201). The authors would like to thank the shiyanjia lab (https://www.shiyanjia.com) for the XPS test.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinqin Huang or **anwen Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Wang, T., Huang, C. et al. Platelet membrane-coated C-TiO2 hollow nanospheres for combined sonodynamic and alkyl-radical cancer therapy. Nano Res. 16, 782–791 (2023). https://doi.org/10.1007/s12274-022-4646-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4646-2

Keywords

Navigation