Log in

Interfacial engineering of 3D hollow CoSe2@ultrathin MoSe2 core@shell heterostructure for efficient pH-universal hydrogen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rational design and construction of low-cost and highly efficient electrocatalysts for hydrogen evolution reaction (HER) is meaningful but challenging. Herein, a robust three dimensional (3D) hollow CoSe2@ultrathin MoSe2 core@shell heterostructure (CoSe2@MoSe2) is proposed as an efficient HER electrocatalyst through interfacial engineering. Benefitting from the abundant heterogeneous interfaces on CoSe2@MoSe2, the exposed edge active sites are maximized and the charge transfer at the hetero-interfaces is accelerated, thus facilitating the HER kinetics. It exhibits remarkable performance in pH-universal conditions. Notably, it only needs an overpotential (η10) of 108 mV to reach a current density of 10 mA·cm−2 in 1.0 M KOH, outperforming most of the reported transition metal selenides electrocatalysts. Density functional theory (DFT) calculations unveil that the heterointerfaces synergistically optimize the Gibbs free energies of H2O and H* during alkaline HER, accelerating the reaction kinetics. The present work may provide new construction guidance for rational design of high-efficient electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, K. L.; Wang, Z.; Han, C. B.; Ke, X.; Wang, C.; **, Y.; Zhang, Q.; Liu, J.; Wang, H.; Yan, H. Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nat. Commun. 2021, 12, 3783.

    Article  CAS  Google Scholar 

  2. Zheng, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem., Int. Ed. 2015, 54, 52–65.

    Article  CAS  Google Scholar 

  3. Shang, H. S.; Zhao, Z. H.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Li, A.; Dong, J. C.; An, P. F.; Zheng, L. R.; Chen, W. X. Dynamic evolution of isolated Ru-FeP atomic interface sites for promoting the electrochemical hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 22607–22612.

    Article  CAS  Google Scholar 

  4. **u, L. Y.; Pei, W.; Zhou, S.; Wang, Z. Y.; Yang, P. J.; Zhao, J. J.; Qiu, J. S. Multilevel hollow MXene tailored low-Pt catalyst for efficient hydrogen evolution in full-pH range and seawater. Adv. Funct. Mater. 2020, 30, 1910028.

    Article  CAS  Google Scholar 

  5. Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

    Article  CAS  Google Scholar 

  6. Staszak-Jirkovsky, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G. et al. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 2016, 15, 197–203.

    Article  CAS  Google Scholar 

  7. Wang, X. S.; Xu, C. C.; Jaroniec, M.; Zheng, Y.; Qiao, S. Z. Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions. Nat. Commun. 2019, 10, 4876.

    Article  Google Scholar 

  8. Sheng, W. C.; Myint, M.; Chen, J. G.; Yan, Y. S. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 2013, 6, 1509–1512.

    Article  CAS  Google Scholar 

  9. Strmcnik, D.; Uchimura, M.; Wang, C.; Subbaraman, R.; Danilovic, N.; van der Vliet, D.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 2013, 5, 300–306.

    Article  CAS  Google Scholar 

  10. Ma, F. X.; Wu, H. B.; **a, B. Y.; Xu, C. Y.; Lou, X. W. Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production. Angew. Chem., Int. Ed. 2015, 54, 15395–15399.

    Article  CAS  Google Scholar 

  11. Mao, J. J.; He, C. T.; Pei, J. J.; Chen, W. X.; He, D. S.; He, Y. Q.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Wang, D. S. et al. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat. Commun. 2018, 9, 4958.

    Article  Google Scholar 

  12. Pan, Y.; Sun, K. A.; Lin, Y.; Cao, X.; Cheng, Y. S.; Liu, S. J.; Zeng, L. Y.; Cheong, W. C.; Zhao, D.; Wu, K. L. et al. Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy 2019, 56, 411–419.

    Article  CAS  Google Scholar 

  13. Mao, J. J.; Yin, J. S.; Pei, J. J.; Wang, D. S.; Li, Y. D. Single atom alloy: An emerging atomic site material for catalytic applications. Nano Today 2020, 34, 100917.

    Article  CAS  Google Scholar 

  14. Yang, Y.; Yao, H. Q.; Yu, Z. H.; Islam, S. M.; He, H. Y.; Yuan, M. W.; Yue, Y. H.; Xu, K.; Hao, W. C.; Sun, G. B. et al. Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. J. Am. Chem. Soc. 2019, 141, 10417–10430.

    Article  CAS  Google Scholar 

  15. Najafi, L.; Bellani, S.; Oropesa-Nuñez, R.; Ansaldo, A.; Prato, M.; Del Rio Castillo, A. E.; Bonaccorso, F. Engineered MoSe2-based heterostructures for efficient electrochemical hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1703212.

    Article  Google Scholar 

  16. Fu, Q.; Han, J. C.; Wang, X. J.; Xu, P.; Yao, T.; Zhong, J.; Zhong, W. W.; Liu, S. W.; Gao, T. L.; Zhang, Z. H. et al. 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis. Adv. Mater. 2021, 33, 1907818.

    Article  CAS  Google Scholar 

  17. Wang, Q. C.; Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Zeng, J.; Song, Y. H.; Duan, X. D.; Wang, D. S.; Li, Y. D. Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy Environ. Sci. 2020, 13, 1593–1616.

    Article  CAS  Google Scholar 

  18. Chia, X. Y.; Eng, A. Y. S.; Ambrosi, A.; Tan, S. M.; Pumera, M. Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev. 2015, 115, 11941–11966.

    Article  CAS  Google Scholar 

  19. Li, H. Y.; Chen, S. M.; Zhang, Y.; Zhang, Q. H.; Jia, X. F.; Zhang, Q.; Gu, L.; Sun, X. M.; Song, L.; Wang, X. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 2018, 9, 2452.

    Article  Google Scholar 

  20. Li, H. Y.; Chen, S. M.; Jia, X. F.; Xu, B.; Lin, H. F.; Yang, H. Z.; Song, L.; Wang, X. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting. Nat. Commun. 2017, 8, 15377.

    Article  CAS  Google Scholar 

  21. Zhang, J. T.; Chen, Y. L.; Liu, M.; Du, K.; Zhou, Y.; Li, Y. P.; Wang, Z. J.; Zhang, J. 1T@2H-MoSe2 nanosheets directly arrayed on Ti plate: An efficient electrocatalytic electrode for hydrogen evolution reaction. Nano Res. 2018, 11, 4587–4598.

    Article  CAS  Google Scholar 

  22. Zheng, X. R.; Han, X. P.; Cao, Y. H.; Zhang, Y.; Nordlund, D.; Wang, J. H.; Chou, S. L.; Liu, H.; Li, L. L.; Zhong, C. et al. Identifying dense NiSe2/CoSe2 heterointerfaces coupled with surface high-valence bimetallic sites for synergistically enhanced oxygen electrocatalysis. Adv. Mater. 2020, 32, 2000607.

    Article  CAS  Google Scholar 

  23. Hu, X. M.; Zhang, S. L.; Sun, J. W.; Yu, L.; Qian, X. Y.; Hu, R. D.; Wang, Y. N.; Zhao, H. G.; Zhu, J. W. 2D Fe-containing cobalt phosphide/cobalt oxide lateral heterostructure with enhanced activity for oxygen evolution reaction. Nano Energy 2019, 56, 109–117.

    Article  CAS  Google Scholar 

  24. Qian, Q. Z.; Zhang, J. H.; Li, J. M.; Li, Y. P.; **, X.; Zhu, Y.; Liu, Y.; Li, Z. Y.; El-Harairy, A.; **ao, C. et al. Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew. Chem., Int. Ed. 2021, 60, 5984–5993.

    Article  CAS  Google Scholar 

  25. Zhao, B.; Liu, J. W.; Xu, C. Y.; Feng, R. F.; Sui, P. F.; Luo, J. X.; Wang, L.; Zhang, J. J.; Luo, J. L.; Fu, X. Z. Interfacial engineering of Cu2Se/Co3Se4 multivalent hetero-nanocrystals for energy-efficient electrocatalytic co-generation of value-added chemicals and hydrogen. Appl. Catal. B:Environ. 2021, 285, 119800.

    Article  CAS  Google Scholar 

  26. Liu, C. C.; Gong, T.; Zhang, J.; Zheng, X. R.; Mao, J.; Liu, H.; Li, Y.; Hao, Q. Y. Engineering Ni2P-NiSe2 heterostructure interface for highly efficient alkaline hydrogen evolution. Appl. Catal. B: Environ. 2020, 262, 118245.

    Article  CAS  Google Scholar 

  27. Jiao, J. Q.; Yang, W. J.; Pan, Y.; Zhang, C.; Liu, S. J.; Chen, C.; Wang, D. S. Interface engineering of partially phosphidated Co@CoP@NPCNTs for highly enhanced electrochemical overall water splitting. Small 2020, 16, 2002124.

    Article  CAS  Google Scholar 

  28. Lu, K.; Liu, Y. Z.; Lin, F.; Cordova, I. A.; Gao, S. Y.; Li, B. M.; Peng, B.; Xu, H. P.; Kaelin, J.; Coliz, D. et al. LixNiO/Ni heterostructure with strong basic lattice oxygen enables electrocatalytic hydrogen evolution with Pt-like activity. J. Am. Chem. Soc. 2020, 142, 12613–12619.

    Article  CAS  Google Scholar 

  29. Li, Y. B.; Tan, X.; Tan, H.; Ren, H. J.; Chen, S.; Yang, W. F.; Smith, S. C.; Zhao, C. Phosphine vapor-assisted construction of heterostructured Ni2P/NiTe2 catalysts for efficient hydrogen evolution. Energy Environ. Sci. 2020, 13, 1799–1807.

    Article  CAS  Google Scholar 

  30. Zhai, P. L.; Zhang, Y. X.; Wu, Y. Z.; Gao, J. F.; Zhang, B.; Cao, S. Y.; Zhang, Y. T.; Li, Z. W.; Sun, L. C.; Hou, J. G. Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting. Nat. Commun. 2020, 11, 5462.

    Article  CAS  Google Scholar 

  31. Yang, L.; Huang, L. T.; Yao, Y. H.; Jiao, L. F. In-situ construction of lattice-matching NiP2/NiSe2 heterointerfaces with electron redistribution for boosting overall water splitting. Appl. Catal. B:Environ. 2021, 282, 119584.

    Article  CAS  Google Scholar 

  32. Chen, P. Z.; Xu, K.; Tao, S.; Zhou, T. P.; Tong, Y.; Ding, H.; Zhang, L. D.; Chu, W. S.; Wu, C. Z.; **e, Y. Phase-transformation engineering in cobalt diselenide realizing enhanced catalytic activity for hydrogen evolution in an alkaline medium. Adv. Mater. 2016, 28, 7527–7532.

    Article  CAS  Google Scholar 

  33. Zhang, H.; Wang, T.; Sumboja, A.; Zang, W.; **e, J.; Gao, D.; Pennycook, S. J.; Liu, Z.; Guan, C.; Wang, J. Integrated hierarchical carbon flake arrays with hollow P-doped CoSe2 nanoclusters as an advanced bifunctional catalyst for Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1804846.

    Article  Google Scholar 

  34. Zhang, L. L.; Zhang, T. T.; Dai, K. Q.; Zhao, L. Q.; Wei, Q. H.; Zhang, B.; **ang, X. Ultrafine Co3O4 nanolayer-shelled CoWP nanowire array: A bifunctional electrocatalyst for overall water splitting. RSC Adv. 2020, 10, 29326–29335.

    Article  CAS  Google Scholar 

  35. Liu, H.; Liu, B. H.; Guo, H.; Liang, M. F.; Zhang, Y. H.; Borjigin, T.; Yang, X. F.; Wang, L.; Sun, X. L. N-doped C-encapsulated scalelike yolk-shell frame assembled by expanded planes few-layer MoSe2 for enhanced performance in sodium-ion batteries. Nano Energy 2018, 51, 639–648.

    Article  CAS  Google Scholar 

  36. Lyu, F. L.; Bai, Y. C.; Li, Z. W.; Xu, W. J.; Wang, Q. F.; Mao, J.; Wang, L.; Zhang, X. W.; Yin, Y. D. Self-templated fabrication of CoO-MoO2 nanocages for enhanced oxygen evolution. Adv. Funct. Mater. 2017, 27, 1702324.

    Article  Google Scholar 

  37. Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3982–3986.

    Article  CAS  Google Scholar 

  38. Yu, L.; **a, B. Y.; Wang, X.; Lou, X. W. General formation of M-MoS3 (M = Co, Ni) hollow structures with enhanced electrocatalytic activity for hydrogen evolution. Adv. Mater. 2016, 28, 92–97.

    Article  CAS  Google Scholar 

  39. Zhang, T. R.; Ge, J. P.; Hu, Y. X.; Zhang, Q.; Aloni, S.; Yin, Y. D. Formation of hollow silica colloids through a spontaneous dissolution-regrowth process. Angew. Chem., Int. Ed. 2008, 47, 5806–5811.

    Article  CAS  Google Scholar 

  40. Li, S. F.; Yu, C.; Yang, J.; Zhao, C. T.; Zhang, M. D.; Huang, H. W.; Liu, Z. B.; Guo, W.; Qiu, J. S. A superhydrophilic “nanoglue” for stabilizing metal hydroxides onto carbon materials for high-energy and ultralong-life asymmetric supercapacitors. Energy Environ. Sci. 2017, 10, 1958–1965.

    Article  CAS  Google Scholar 

  41. **a, C.; Jiang, Q.; Zhao, C.; Hedhili, M. N.; Alshareef, H. N. Selenide-based electrocatalysts and scaffolds for water oxidation applications. Adv. Mater. 2016, 28, 77–85.

    Article  CAS  Google Scholar 

  42. Hou, P.; Li, D.; Yang, N. L.; Wan, J. W.; Zhang, C. H.; Zhang, X. Q.; Jiang, H. Y.; Zhang, Q. H.; Gu, L.; Wang, D. Delicate control on the shell structure of hollow spheres enables tunable mass transport in water splitting. Angew. Chem., Int. Ed. 2021, 60, 6926–6931.

    Article  CAS  Google Scholar 

  43. Wang, J. Y.; Wan, J. W.; Wang, D. Hollow multishelled structures for promising applications: Understanding the structure-performance correlation. Acc. Chem. Res. 2019, 52, 2169–2178.

    Article  CAS  Google Scholar 

  44. Yousaf, M.; Wang, Y. S.; Chen, Y. J.; Wang, Z. P.; Firdous, A.; Ali, Z.; Mahmood, N.; Zou, R. Q.; Guo, S. J.; Han, R. P. S. A 3D trilayered CNT/MoSe2/C heterostructure with an expanded MoSe2 interlayer spacing for an efficient sodium storage. Adv. Energy Mater. 2019, 9, 1900567.

    Article  Google Scholar 

  45. Gao, M. R.; Xu, Y. F.; Jiang, J.; Zheng, Y. R.; Yu, S. H. Water oxidation electrocatalyzed by an efficient Mn3O4/CoSe2 nanocomposite. J. Am. Chem. Soc. 2012, 134, 2930–2933.

    Article  CAS  Google Scholar 

  46. Chen, J.; Pan, A. Q.; Wang, Y. P.; Cao, X. X.; Zhang, W. C.; Kong, X. Z.; Su, Q.; Lin, J. D.; Cao, G. Z.; Liang, S. Q. Hierarchical mesoporous MoSe2@CoSe/N-doped carbon nanocomposite for sodium ion batteries and hydrogen evolution reaction applications. Energy Storage Mater. 2019, 21, 97–106.

    Article  Google Scholar 

  47. Sun, Z. H.; Wu, X. L.; Xu, J. N.; Qu, D. Y.; Zhao, B. L.; Gu, Z. Y.; Li, W. H.; Liang, H. J.; Gao, L. F.; Fan, Y. Y. et al. Construction of bimetallic selenides encapsulated in nitrogen/sulfur Co-doped hollow carbon nanospheres for high-performance sodium/potassium-ion half/full batteries. Small 2020, 16, 1907670.

    Article  CAS  Google Scholar 

  48. Najafi, L.; Bellani, S.; Oropesa-Nuñez, R.; Martín-García, B.; Prato, M.; Pasquale, L.; Panda, J. K.; Marvan, P.; Sofer, Z.; Bonaccorso, F. TaS2, TaSe2, and their heterogeneous films as catalysts for the hydrogen evolution reaction. ACS Catal. 2020, 10, 3313–3325.

    Article  CAS  Google Scholar 

  49. Suo, G. Q.; Zhang, J. Q.; Li, D.; Yu, Q. Y.; Wang, W.; He, M.; Feng, L.; Hou, X. J.; Yang, Y. L.; Ye, X. H. et al. N-doped carbon/ultrathin 2D metallic cobalt selenide core/sheath flexible framework bridged by chemical bonds for high-performance potassium storage. Chem. Eng. J. 2020, 388, 124396.

    Article  CAS  Google Scholar 

  50. Guo, Y. X.; Yao, Z. Y.; Shang, C. S.; Wang, E. K. P doped Co2Mo3Se nanosheets grown on carbon fiber cloth as an efficient hybrid catalyst for hydrogen evolution. J. Mater. Chem. A 2017, 5, 12043–12047.

    Article  CAS  Google Scholar 

  51. Li, X. H.; Guo, S. H.; Li, W.; Ren, X. G.; Su, J.; Song, Q.; Sobrido, A. J.; Wei, B. Q. Edge-rich MoS2 grown on edge-oriented three-dimensional graphene glass for high-performance hydrogen evolution. Nano Energy 2019, 57, 388–397.

    Article  CAS  Google Scholar 

  52. Lu, X.; Utama, M. I. B.; Lin, J. H.; Gong, X.; Zhang, J.; Zhao, Y. Y.; Pantelides, S. T.; Wang, J. X.; Dong, Z. L.; Liu, Z. et al. Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Nano Lett. 2014, 14, 2419–2425.

    Article  CAS  Google Scholar 

  53. Sun, D.; Feng, S. M.; Terrones, M.; Schaak, R. E. Formation and interlayer decoupling of colloidal MoSe2 nanoflowers. Chem. Mater. 2015, 27, 3167–3175.

    Article  CAS  Google Scholar 

  54. Huang, Y. P.; Miao, Y. E.; Fu, J.; Mo, S. Y.; Wei, C.; Liu, T. X. Perpendicularly oriented few-layer MoSe2 on SnO2 nanotubes for efficient hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 16263–16271.

    Article  CAS  Google Scholar 

  55. Chen, W. H.; Qiao, R.; Song, C. S.; Zhao, L. H.; Jiang, Z. J.; Maiyalagan, T.; Jiang, Z. Q. Tailoring the thickness of MoSe2 layer of the hierarchical double-shelled N-doped carbon@MoSe2 hollow nanoboxes for efficient and stable hydrogen evolution reaction. J. Catal. 2020, 381, 363–373.

    Article  CAS  Google Scholar 

  56. Yoon, H.; Song, H. J.; Ju, B.; Kim, D. W. Cobalt phosphide nanoarrays with crystalline-amorphous hybrid phase for hydrogen production in universal-pH. Nano Res. 2020, 13, 2469–2477.

    Article  CAS  Google Scholar 

  57. Yu, B.; Qi, F.; Zheng, B. J.; Hou, W. Q.; Zhang, W. L.; Li, Y. R.; Chen, Y. F. Self-assembled pearl-bracelet-like CoSe2-SnSe2/CNT hollow architecture as highly efficient electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 1655–1662.

    Article  CAS  Google Scholar 

  58. Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900.

    Article  CAS  Google Scholar 

  59. Xu, C. Y.; Li, Q. H.; Shen, J. L.; Yuan, Z.; Ning, J. Q.; Zhong, Y. J.; Zhang, Z. Y.; Hu, Y. A facile sequential ion exchange strategy to synthesize CoSe2/FeSe2 double-shelled hollow nanocuboids for the highly active and stable oxygen evolution reaction. Nanoscale 2019, 11, 10738–10745.

    Article  CAS  Google Scholar 

  60. Li, K. D.; Zhang, J. F.; Wu, R.; Yu, Y. F.; Zhang, B. Anchoring CoO domains on CoSe2 nanobelts as bifunctional electrocatalysts for overall water splitting in neutral media. Adv. Sci. 2016, 3, 1500426.

    Article  Google Scholar 

  61. Qiu, B. C.; Wang, C.; Zhang, N.; Cai, L. J.; **ong, Y. J.; Chai, Y. CeO2-induced interfacial Co2+ octahedral sites and oxygen vacancies for water oxidation. ACS Catal. 2019, 9, 6484–6490.

    Article  CAS  Google Scholar 

  62. Gao, J. Y.; Li, Y. P.; Shi, L.; Li, J. J.; Zhang, G. Q. Rational design of hierarchical nanotubes through encapsulating CoSe2 nanoparticles into MoSe2/C composite shells with enhanced lithium and sodium storage performance. ACS Appl. Mater. Interfaces 2018, 10, 20635–20642.

    Article  CAS  Google Scholar 

  63. Ma, M. Z.; Zhang, S. P.; Yao, Y.; Wang, H. Y.; Huang, H. J.; Xu, R.; Wang, J. W.; Zhou, X. F.; Yang, W. J.; Peng, Z. Q. et al. Heterostructures of 2D molybdenum dichalcogenide on 2D nitrogen-doped carbon: Superior potassium-ion storage and insight into potassium storage mechanism. Adv. Mater. 2020, 32, 2000958.

    Article  CAS  Google Scholar 

  64. Zhu, H.; Zhang, J. F.; Yanzhang, R. P.; Du, M. L.; Wang, Q. F.; Gao, G. H.; Wu, J. D.; Wu, G. M.; Zhang, M.; Liu, B. et al. When cubic cobalt sulfide meets layered molybdenum disulfide: A core-shell system toward synergetic electrocatalytic water splitting. Adv. Mater. 2015, 27, 4752–4759.

    Article  CAS  Google Scholar 

  65. Tang, B. S.; Yu, Z. G.; Zhang, Y. X.; Tang, C. H.; Seng, H. L.; Seh, Z. W.; Zhang, Y. W.; Pennycook, S. J.; Gong, H.; Yang, W. F. Metal-organic framework-derived hierarchical MoS2/CoS2 nanotube arrays as pH-universal electrocatalysts for efficient hydrogen evolution. J. Mater. Chem. A 2019, 7, 13339–13346.

    Article  CAS  Google Scholar 

  66. Zhang, J. J.; Wu, M. H.; Liu, T.; Kang, W. P.; Xu, J. Hierarchical nanotubes constructed from interlayer-expanded MoSe2 nanosheets as a highly durable electrode for sodium storage. J. Mater. Chem. A 2017, 5, 24859–24866.

    Article  CAS  Google Scholar 

  67. Ma, Y. F.; Chen, M.; Geng, H. B.; Dong, H. F.; Wu, P.; Li, X. M.; Guan, G. Q.; Wang, T. J. Synergistically tuning electronic structure of porous β-Mo2C spheres by Co do** and Mo-vacancies defect engineering for optimizing hydrogen evolution reaction activity. Adv. Funct. Mater. 2020, 30, 2000561.

    Article  CAS  Google Scholar 

  68. Chen, Y. J.; Ren, Z. Y.; Fu, H. Y.; Zhang, X.; Tian, G. H.; Fu, H. G. NiSe-Ni0.85Se heterostructure nanoflake arrays on carbon paper as efficient electrocatalysts for overall water splitting. Small 2018, 14, 1800763.

    Article  Google Scholar 

  69. Li, Y. G.; Wang, H. L.; **e, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.

    Article  CAS  Google Scholar 

  70. Wan, J. W.; Zhao, Z. H.; Shang, H. S.; Peng, B.; Chen, W. X.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Cao, R.; Sarangi, R. et al. In situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 2020, 142, 8431–8439.

    Article  CAS  Google Scholar 

  71. Deng, S. J.; Zhong, Y.; Zeng, Y. X.; Wang, Y. D.; Yao, Z. J.; Yang, F.; Lin, S. W.; Wang, X. L.; Lu, X. H.; **a, X. H. et al. Directional construction of vertical nitrogen-doped 1T-2H MoSe2/graphene shell/core nanoflake arrays for efficient hydrogen evolution reaction. Adv. Mater. 2017, 29, 1700748.

    Article  Google Scholar 

  72. Zhao, G. Q.; Li, P.; Rui, K.; Chen, Y. P.; Dou, S. X.; Sun, W. P. CoSe2/MoSe2 heterostructures with enriched water adsorption/dissociation sites towards enhanced alkaline hydrogen evolution reaction. Chem. Eur. J. 2018, 24, 11158–11165.

    Article  CAS  Google Scholar 

  73. Duan, J. J.; Chen, S.; Ortíz-Ledón, C. A.; Jaroniec, M.; Qiao, S. Z. Phosphorus vacancies that boost electrocatalytic hydrogen evolution by two orders of magnitude. Angew. Chem., Int. Ed. 2020, 59, 8181–8186.

    Article  CAS  Google Scholar 

  74. Chen, X. S.; Liu, G. B.; Zheng, W.; Feng, W.; Cao, W. W.; Hu, W. P.; Hu, P. A. Vertical 2D MoO2/MoSe2 core-shell nanosheet arrays as high-performance electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 2016, 26, 8537–8544.

    Article  CAS  Google Scholar 

  75. Chen, W. S.; Gu, J. J.; Du, Y. P.; Song, F.; Bu, F. X.; Li, J. H.; Yuan, Y.; Luo, R. C.; Liu, Q. L.; Zhang, D. Achieving rich and active alkaline hydrogen evolution heterostructures via interface engineering on 2D 1T-MoS2 quantum sheets. Adv. Funct. Mater. 2020, 30, 2000551.

    Article  CAS  Google Scholar 

  76. Zhou, P.; Lv, X. S.; **ng, D. N.; Ma, F. H.; Liu, Y. Y.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Dai, Y.; Huang, B. B. High-efficient electrocatalytic overall water splitting over vanadium doped hexagonal Ni0.2Mo0.8N. Appl. Catal. B:Environ. 2020, 263, 118330.

    Article  CAS  Google Scholar 

  77. Wang, Y. K.; Zhang, R. F.; Chen, J.; Wu, H.; Lu, S. Y.; Wang, K.; Li, H. L.; Harris, C. J.; **, K.; Kumar, R. V. et al. Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering. Adv. Energy Mater. 2019, 9, 1900953.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Nos. U1804140, U20041100 and 21801015) for support. This work is also supported by Bei**g Institute of Technology Research Fund Program for Young Scholars (No. 3090012221909). The authors thank BL10B and BL12B in the National Synchrotron Radiation Laboratory (NSRL) for help with characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huishan Shang or Wenxing Chen.

Electronic Supplementary Material

12274_2021_3887_MOESM1_ESM.pdf

Interfacial engineering of 3D hollow CoSe2@ultrathin MoSe2 core@shell heterostructure for efficient pH-universal hydrogen evolution reaction

Supplementary material, approximately 4.81 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Lei, Y., Zhou, D. et al. Interfacial engineering of 3D hollow CoSe2@ultrathin MoSe2 core@shell heterostructure for efficient pH-universal hydrogen evolution reaction. Nano Res. 15, 2895–2904 (2022). https://doi.org/10.1007/s12274-021-3887-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3887-9

Keywords

Navigation