Log in

Bimetallic active site nuclear-shell heterostructure enables efficient dual-functional electrocatalysis in alkaline media

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Hydrogen, as a green and clean next-generation fuel, is a key to achieving the goal of carbon neutrality. Constructing an electrocatalyst with bifunctional hydrogen evolution and oxygen evolution activity in the same electrolyte is a key technology for producing hydrogen via water splitting. Herein, a bimetallic active site catalyst, which possessed an edge-riched MoS2 nanoflakes array vertically growing on cubic CoS2, forming a nuclear-shell heterogeneous configuration, termed CSC-MoS2@CoS2. was reported The optimal CSC-MoS2@CoS2-24 possessed good dual-functional electrocatalytic activity (hydrogen evolution (HER), 10 mA·cm−2@241.5 mV and oxygen evolution (OER), 10 mA·cm−2@350 mV). Especially, CSC-MoS2@CoS2-24 exhibited an extremely high mass activity for HER, and only required an overpotential of ~ 550 mV when reaching a large current density of 1422 mA·mg−1, which was 20.6-fold that of the bulk CoS2 (69 mA·mg−1), as well as exhibiting stability of up to 100 h. The good electrocatalytic performance was attributed to the nuclear-shell heterostructure of MoS2@CoS2 hybrid could bring critical synergies, improving efficient mass transfer and electron transfer processes between CoS2 and MoS2, which collaboratively promoted the electrocatalytic kinetics. It is foreseeable that the method proposed in this work will have guiding value for the preparation of dual-functional electrocatalysts with multi-interface heterostructures by assembling layered sulfides on cubic sulfides.

Graphical abstract

摘要

氢气作为绿色清洁的次世代燃料,是实现碳中和目标的关键。在同一电解质中构建具有析氢和析氧双功能的电催化剂是水分解制氢的关键所在。在此,我们制备了一种双金属活性位点催化剂,它在立方形CoS2上垂直生长了边缘丰富的MoS2纳米片阵列,形成核-壳异质构型,记作 CSC-MoS2@CoS2。其中最佳的CSC-MoS2@CoS2-24催化剂具有良好的双功能电催化活性(HER,10 mA·cm-2@241.5 mV)和(OER,10 mA·cm-2@350 mV)。而且CSC-MoS2@CoS2-24 表现出极高的 HER 质量比活性,在达到 1422 mA·mg-1 的大电流密度时仅需要~550 mV 的过电位,是体相CoS2 (69 mA·mg-1)的20.6倍。以及表现出长达 100 h的稳定性。良好的电催化性能归因于 MoS2@CoS2杂化物的核壳异质结构可以带来关键的协同作用,改善CoS2和 MoS2之间的有效传质和电子转移过程,协同促进了电催化动力学。可以预见,该文章提出的策略将对通过在立方硫化物上组装层状硫化物得到具有多界面异质结构的双功能电催化剂提供有益指导。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang JJ, Li XP, Cui BF, Zhang Z, Hu XF, Ding J, Deng YD, Han XP, Hu WB. A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Met. 2021;40(11):3019. https://doi.org/10.1007/s12598-021-01736-x.

    Article  CAS  Google Scholar 

  2. Sun JP, Zhao Z, Li J, Li ZZ, Meng XC. Recent advances in electrocatalytic seawater splitting. Rare Met. 2022. https://doi.org/10.1007/s12598-022-02168-x.

    Article  Google Scholar 

  3. Feng YJ, Duan YY, Zou HJ, Ma JP, Zhou K, Zhou XY. Research status of single atom catalyst in hydrogen production by photocatalytic water splitting. Chin J Rare Met. 2021;45(5):551. https://doi.org/10.13373/j.cnki.cjrm.XY20090007.

    Article  Google Scholar 

  4. Wu T, Sun MZ, Huang BL. Non-noble metal-based bifunctional electrocatalysts for hydrogen production. Rare Met. 2022;41(7):2169. https://doi.org/10.1007/s12598-021-01914-x.

    Article  CAS  Google Scholar 

  5. Guo YW, Liu XD, Zhao JJ, Wei B, Ding YP. Guo YW, Liu XD, Zhao JJ, Wei B, Ding YP. Preparation of Er:YAG/MoS2-NiGa2O4 composite and photocatalytic activity. Chin J Rare Met. 2021;45(12):1418. https://doi.org/10.13373/j.cnki.cjrm.xy19080035.

  6. Tan JW, Kang B, Kim K, Kang DY, Lee H, Ma S, Jang G, Lee H, Moon J. Hydrogel protection strategy to stabilize water-splitting photoelectrodes. Nat Energy. 2022;7:537. https://doi.org/10.1038/s41560-022-01042-5.

    Article  CAS  Google Scholar 

  7. Kibsgaard J, Chorkendorff I. Considerations for the scaling-up of water splitting catalysts. Nat Energy. 2019;4:430. https://doi.org/10.1038/s41560-019-0407-1.

    Article  Google Scholar 

  8. Weng BC, Grice CR, Meng WW, Guan L, Xu FH, Yu Y, Wang CL, Zhao DW, Yan YF. MOF-derived CoWP@C composite nanowire electrocatalyst for efficient water splitting. ACS Energy Lett. 2018;3(6):1434. https://doi.org/10.1021/acsenergylett.8b00584.

    Article  CAS  Google Scholar 

  9. **a BY, Yan Y, Li N, Wu HB, Lou WX, Wang X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat Energy. 2016;1:15006. https://doi.org/10.1038/nenergy.2015.6.

    Article  CAS  Google Scholar 

  10. Hua W, Sun HH, Xu F, Wang JG. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met. 2020;39(4):335. https://doi.org/10.1007/s12598-020-01384-7.

    Article  CAS  Google Scholar 

  11. Li XP, Huang C, Han WK, Yang TO, Liu ZQ. Transition metal-based electrocatalysts for overall water splitting. Chem Lett. 2021;32(9):2597. https://doi.org/10.1016/j.cclet.2021.01.047.

    Article  CAS  Google Scholar 

  12. Wang RH, Wang L, Zhou W, Chen YJ, Yan HJ, Ren ZY, Tian CG, Shi KY, Fu HG. Ni2P entwined by graphite layers as low-Pt electrocatalyst in acidic media for oxygen reduction. ACS Appl Mater Interfaces. 2018;10(12):9999. https://doi.org/10.1021/acsami.7b16167.

    Article  CAS  Google Scholar 

  13. Wang XS, Zheng Y, Sheng WC, Xu ZC, Jaroniec M, Qiao SZ. Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater Today. 2020;36:125. https://doi.org/10.1016/j.mattod.2019.12.003.

    Article  CAS  Google Scholar 

  14. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488:294. https://doi.org/10.1038/nature11475.

    Article  CAS  Google Scholar 

  15. Xu QC, Jiang H, Zhang HX, Hu HJ, Li CZ. Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting. Appl Catal B Environ. 2019;242:60. https://doi.org/10.1016/j.apcatb.2018.09.064.

    Article  CAS  Google Scholar 

  16. Xu GD, Feng MY, Wang SY, Cheng Y, Chen JJ. Kinetic regulation engineering and in-situ spectroscopy studies on transition-metal-based electrocatalysts for water splitting. ChemElectroChem. 2022;9(15): e202200549. https://doi.org/10.1002/celc.202200549.

  17. Li YR, Li MX, Li SN, Liu YJ, Chen J, Wang Y. A review of energy and environment electrocatalysis based on high-index faceted nanocrystals. Rare Met. 2021;40(12):3406. https://doi.org/10.1007/s12598-021-01747-8.

    Article  CAS  Google Scholar 

  18. Li XN, Liu H, Sun YH, Zhu LY, Yin XF, Sun SJ, Fu ZP, Lu YL, Wang XL, ad Cheng ZX. High oxygen evolution activity of tungsten bronze oxides boosted by anchoring of Co2+ at Nb5+ sites accompanied by substantial oxygen vacancy. Adv Sci 2020;7 (22): 2002242. https://doi.org/10.1002/advs.202002242.

  19. Qin YC, Zhang WL, Wang FQ, Li JJ, Ye JY, Sheng X, Li CX, Liang XY, Liu P, Wang XP, Zheng X, Ren YL, Xu CL, Zhang ZC. Extraordinary p-d hybridization interaction in heterostructural PdPdSe nanosheets boosts C-C bond cleavage of ethylene glycol electrooxidation. Chem Int Ed 2022;134(16): e202200899. https://doi.org/10.1002/ange.202200899

  20. Wang FQ, Zhang WL, Wan HB, Li CX, An WK, Sheng X, Liang XY, Wang XP, Ren YL, Zheng X, Lv D, Qin YC. Recent progress in advanced core-shell metal-based catalysts for electrochemical carbon dioxide reduction. Chinese Chem Lett. 2022;33(5):2259. https://doi.org/10.1016/j.cclet.2021.08.074.

    Article  CAS  Google Scholar 

  21. Lu TY, Li TF, Shi DS, Sun JL, Pang H, Xu L, Yang J, Tang YW. In situ establishment of Co/MoS2 heterostructures onto inverse opal-structured N, S-doped carbon hollow nanospheres: Interfacial and architectural dual engineering for efficient hydrogen evolution reaction. SmartMat. 2021;2(4):591. https://doi.org/10.1002/smm2.1063.

    Article  CAS  Google Scholar 

  22. ** as efficient and pH-universal electrocatalysts for hydrogen evolution reaction. Chem Sci. 1970;2018:9. https://doi.org/10.1039/c7sc04849a.

    Article  CAS  Google Scholar 

  23. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem. 2013;5:263. https://doi.org/10.1038/nchem.1589.

  24. Fang XJ, Ren LP, Li F, Jiang ZX, Wang ZG. Modulating electronic structure of CoSe2 by Ni do** for efficient electrocatalyst for hydrogen evolution reaction. Rare Met. 2022;41(3):901. https://doi.org/10.1007/s12598-021-01819-9.

    Article  CAS  Google Scholar 

  25. Cheng Y, Guo HR, Yuan PF, Li XP, Zheng LR, Song R. Self-supported bifunctional electrocatalysts with Ni nanoparticles encapsulated in vertical N-doped carbon nanotube for efficient overall water splitting. Chem Eng J 2021;413:127531. https://doi.org/10.1016/j.cej.2020.127531.

  26. Cheng Y, Pang KL, Xu XH, Yuan PF, Zhang ZG, Wu X, Zheng LR, Zhang JN, Song R. Borate crosslinking synthesis of structure tailored carbon-based bifunctional electrocatalysts directly from guar gum hydrogels for efficient overall water splitting. Carbon. 2020;157:153. https://doi.org/10.1016/j.carbon.2019.10.024.

    Article  CAS  Google Scholar 

  27. Gu XY, Li SS, Shao WQ, Mu XQ, Yang YL, Ge Y, Meng WT, Liu GX, Liu SL. Mu SC cation/anion dual-vacancy pair modulated atomically-thin Sex-Co3S4 nanosheets with extremely high water oxidation performance in ultralow-concentration alkaline solutions. Small. 2022;18(15):2108097. https://doi.org/10.1002/smll.202108097.

    Article  CAS  Google Scholar 

  28. Mu XQ, Zhu Y, Gu XY, Dai SP, Mao QX, Bao LT, Li WX, Liu SL, Bao JC, Mu SC. Awakening the oxygen evolution activity of MoS2 by oxophilic-metal induced surface reorganization engineering. J Energy Chem. 2021;62:546. https://doi.org/10.1016/j.jechem.2021.04.019.

    Article  CAS  Google Scholar 

  29. Liu SL, Zhou LL, Zhang WJ, ** JY, Mu XQ, Zhang SD, Chen CY, Mu SC. Stabilizing sulfur vacancy defect by a “click” chemistry of ultrafine palladium to trigger high-efficiency hydrogen evolution of MoS2. Nanoscale. 2020;12(18):9943. https://doi.org/10.1039/D0NR01693D.

    Article  CAS  Google Scholar 

  30. Amiinu IS, Pu ZH, He D, Monestel HGR, Mu S. Scalable cellulose-sponsored functionalized carbon nanorods induced by cobalt for efficient overall water splitting. Carbon. 2018;137:274. https://doi.org/10.1016/j.carbon.2018.05.025.

    Article  CAS  Google Scholar 

  31. Amiinu IS, Pu ZH, Liu Xb, Owusu KA, Monestel HGR, Boakye FO, Zhang H, Mu S. Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-air batteries. Adv Funct Mater. 2017;27(44):1702300. https://doi.org/10.1002/adfm.201702300.

  32. Hou J, Zhang B, Li ZW, Cao S, Sun YQ. Wu YZ, Gao ZM, Sun LC. Vertically aligned oxygenated-CoS2–MoS2 heteronanosheet architecture from polyoxometalate for efficient and stable overall water splitting. ACS Catal. 2018;8(5):4612. https://doi.org/10.1021/acscatal.8b00668.

  33. Niu ZG, Qiu C, Jiang J. Hierarchical CoP–FeP branched heterostructures for highly efficient electrocatalytic water splitting. ACS Sustain Chem Eng. 2019;7(2):2335. https://doi.org/10.1021/acssuschemeng.8b05089.

    Article  CAS  Google Scholar 

  34. Cao J, Zhou J, Zhang YF, Wang YX, Liu XW. Dominating role of aligned MoS2/Ni3S2 nanoarrays supported on three-dimensional Ni foam with hydrophilic interface for highly enhanced hydrogen evolution reaction. ACS Appl Mater Interfaces. 2018;10(2):1752. https://doi.org/10.1021/acsami.7b16407.

    Article  CAS  Google Scholar 

  35. Liu YW, Li J, Huang WT, Zhang Y, Wang MJ, Gao XS, Wang X, ** ML, Hou ZP, Zhou GF, Zhang Z, Liu JM. Surface-induced 2D/1D heterostructured growth of ReS2/CoS2 for high-performance electrocatalysts. ACS Appl Mater Interfaces. 2020;12(30):33586. https://doi.org/10.1021/acsami.0c02951.

    Article  CAS  Google Scholar 

  36. Cheng Y, Pang KL, Wu X, Zhang ZG, Xu XH, Ren JK, Huang W, Song R. In situ hydrothermal synthesis MoS2/guar gum carbon nanoflowers as advanced electrocatalysts for electrocatalytic hydrogen evolution. ACS Sustain Chem Eng. 2018;6(7):8688. https://doi.org/10.1021/acssuschemeng.8b00994.

    Article  CAS  Google Scholar 

  37. Ji L, Wang JY, Teng X, Meyer TJ, Chen ZF. CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting. ACS Catal. 2020;10(1):412. https://doi.org/10.1021/acscatal.9b03623.

    Article  CAS  Google Scholar 

  38. Zhang Y, Guo HR, Li XP, Du J, Ren W, Song R. A 3D multi-interface structure of coral-like Fe-Mo-S/Ni3S2@NF using for high-efficiency and stable overall water splitting. Chem Eng J. 2021;404(15):126483. https://doi.org/10.1016/j.cej.2020.126483

  39. Zhai ZJ, Li C, Zhang L, Wu HC, Zhang L, Tang N, Wang W, Gong JL. Dimensional construction and morphological tuning of heterogeneous MoS2/NiS electrocatalysts for efficient overall water splitting. Chem A. 2018;6(21):9833. https://doi.org/10.1039/C8TA03304H.

    Article  CAS  Google Scholar 

  40. Lu K, Liu YZ, Lin F, Cordova IA, Gao SY, Li BM, Peng B, Kaelin J, Coliz D, Wang C, Shao YY, Cheng YW. LixNiO/Ni heterostructure with strong basic lattice oxygen enables electrocatalytic hydrogen evolution with Pt-like activity. Chem Soc. 2020;142(29):12613. https://doi.org/10.1021/jacs.0c00241.

    Article  CAS  Google Scholar 

  41. Zhang JT, Yu L, Chen Y, Lu XF, Gao SY, Lou XW. Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction. Adv Mater. 2020;32(16):1906432. https://doi.org/10.1002/adma.201906432.

    Article  CAS  Google Scholar 

  42. **ao X, Huang DK, Fu YQ, Wen M, Jiang XX, Lv XW, Li M, Gao L, Liu SS, Wang MK, Zhao C, Shen Y. Engineering NiS/Ni2P heterostructures for efficient electrocatalytic water splitting. ACS Appl Mater Interfaces. 2018;10(5):4689. https://doi.org/10.1021/acsami.7b16430.

    Article  CAS  Google Scholar 

  43. Gao MR, Chan M, Sun YG. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat Commun. 2015;6:7493. https://doi.org/10.1038/ncomms8493.

    Article  Google Scholar 

  44. Tang YJ, Wang Y, Wang XL, Li SL, Huang W, Dong LZ, Liu CH, Li YF, Lan YQ. Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Adv Energy Mater. 2016;6(12):1600116. https://doi.org/10.1002/aenm.201600116.

    Article  CAS  Google Scholar 

  45. Lv X, Li XT, Yang C, Ding XQ, Zhang YF, Zheng YF, Zheng YZ, Li SQ, Sun XN, Tao X. Large-size, porous, ultrathin NiCoP nanosheets for efficient electro/photocatalytic water splitting. Adv Funct Mater. 2020;30(16):1910830. https://doi.org/10.1002/adfm.201910830.

    Article  CAS  Google Scholar 

  46. Yang LJ, Zhou WJ, Lu J, Hou DM, Ke YT, Li GQ, Tang ZH, Kang XW, Chen SW. Hierarchical spheres constructed by defect-rich MoS2/carbon nanosheets for efficient electrocatalytic hydrogen evolution. Nano Energy. 2016;22:490. https://doi.org/10.1016/j.nanoen.2016.02.056.

    Article  CAS  Google Scholar 

  47. Chang K, Hai X, Pang H, Zhang HB, Shi Li, Liu GG, Liu HM, Zhao GX, Li M, Ye JH. Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv Mater. 2016;28(45):10033. https://doi.org/10.1002/adma.201603765.

  48. Hou JG, Wu YZ, Zhang B, Cao SY, Li ZW, Sun LC. Rational design of nanoarray architectures for electrocatalytic water splitting. Adv Funct Mater. 2019;29(20):1808367. https://doi.org/10.1002/adfm.201808367.

    Article  CAS  Google Scholar 

  49. Zhang YL, Luo MC, Yang Y, Li YJ, Guo SJ. Advanced multifunctional electrocatalysts for energy conversion. ACS Energy Lett. 2019;4(7):1672. https://doi.org/10.1021/acsenergylett.9b01045.

    Article  CAS  Google Scholar 

  50. Paul R, Zhu L, Chen H, Qu J, Dai LM. Recent advances in carbon-based metal-free electrocatalysts. Adv Mater. 2019;31(31):1806403. https://doi.org/10.1002/adma.201806403.

    Article  CAS  Google Scholar 

  51. Zhu J, Hu LS, Zhao PX, Lee LYS, Wong KY. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem Rev. 2020;120(2):851. https://doi.org/10.1021/acs.chemrev.9b00248.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Science Foundation of China (Nos. 52203314, 52071226 and 51872193), the Natural Science Foundations of Jiangsu Province (No. BK20210847), Jiangsu Key Laboratory for Biomass Energy and Material (No. JSBEM-S-201805) and the Natural Science Foundations of the Jiangsu Higher Education Institutions of China (No. 21KJB430042). Yu-Feng Cao and Qin-Min Pan are very grateful to Professor Garry Rempel for his guidance and support in our scientific research during his lifetime.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Fang Zhang, Yu-Feng Cao or Tao Qian.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1716 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Zhou, X., Pan, QM. et al. Bimetallic active site nuclear-shell heterostructure enables efficient dual-functional electrocatalysis in alkaline media. Rare Met. 42, 3024–3033 (2023). https://doi.org/10.1007/s12598-023-02300-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02300-5

Keywords

Navigation