Log in

Antibacterial substances from Albizia myriophylla wood against cariogenic Streptococcus mutans

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Albizia myriophylla has been used for long by Thai traditional healers as an important ingredient herb in Thai herbal formulas for caries. In this study, three flavonoids lupinifolin (6), 8-methoxy-7,3′,4′-trihydroxyflavone (7), and 7,8,3′,4′-tetrahydroxyflavone (8), a triterpenoid lupeol (3) as well as four sterols β-sitosterone (1), stigmasta-5,22-dien-3-one (2), β-sitosterol (4), and stigmasterol (5) were isolated from A. myriophylla wood. The antibacterial activity of these compounds against Streptococcus mutans ATCC 25175 was performed using broth microdilution method. All compounds exhibited antibacterial activity against S. mutans with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) ranging from 1–256 and 2–256 μg/ml, respectively. Among the isolated compounds, lupinifolin (6) was found to be the most potent with MIC and MBC of 1 and 2 μg/ml, respectively. Lupinifolin (6) also showed a strong activity against ten clinical isolates of S. mutans with MIC and MBC ranging from 0.25–2 and 0.5–8 μg/ml, respectively. These results reported the bioactive ingredients of A. myriophylla which support its ethnomedical claims as well. Lupinifolin (6) may have a potential to be a natural anticariogenic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Asano, N., T. Yamauchi, K. Kagamifuchi, N. Shimizu, S. Takahashi, H. Takatsuka, K. Ikeda, H. Kizu, W. Chuakul, A. Kettawan, and T. Okamoto. 2005. Iminosugar-producing Thai medicinal plants. Journal of Natural Products 68: 1238–1242.

    Article  PubMed  CAS  Google Scholar 

  • Awadalla, H.I., M.H. Ragab, M.W. Bassuoni, M.T. Fayed, and M.O. Abbas. 2011. A pilot study of the role of green tea use on oral health. International Journal of Dental Hygiene 9: 110–116.

    Article  PubMed  CAS  Google Scholar 

  • Barua, C.C., P.P. Gupta, G.K. Patnaik, S. Misra-Bhattacharya, R.K. Goel, D.K. Kulshrestha, M.P. Dubey, and B.N. Dhawan. 2000. Immunomodulatory effect of Albizzia lebbeck. Pharmaceutical Biology 38: 161–166.

    PubMed  CAS  Google Scholar 

  • Bowen, W.H. 2002. Do we need to be concerned about dental caries in the coming millennium? Critical Reviews in Oral Biology and Medicine 13: 126–131.

    Article  PubMed  Google Scholar 

  • Bown, D. 1995. Encyclopedia of herbs and their uses. London: Dorling Kindersley.

    Google Scholar 

  • Castro, M.L., W.R. Vilela, R.C. Zauli, M. Ikegaki, V.L.G. Rehder, M.A. Foglio, S.M. De Alencar, and P.L. Rosalen. 2009. Bioassay guided purification of the antimicrobial fraction of a Brazilian propolis from Bahia state. BMC Complementary and Alternative Medicine 9: 1–6.

    Article  Google Scholar 

  • Chen, L., X. Cheng, W. Shi, Q. Lu, V.L. Go, D. Heber, and L. Ma. 2005. Inhibition of growth of Streptococcus mutans, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant enterococci by kurarinone, a bioactive flavonoid isolated from Sophora flavescens. Journal of Clinical Microbiology 43: 3574–3575.

    Article  PubMed  CAS  Google Scholar 

  • Chi, Y.S., H.G. Jong, K.H. Son, H.W. Chang, S.S. Kang, and H.P. Kim. 2001. Effects of naturally occurring prenylated flavonoids on enzymes metabolizing arachidonic acid: Cyclooxygenases and lipoxygenases. Biochemical Pharmacology 62: 1185–1191.

    Article  PubMed  CAS  Google Scholar 

  • Chivapat, P., P. Chavalittumrong, A. Attawith, and N. Soonthornchareonnon. 2009. Toxicity study of lupinifolin from stem of Derris reticulata craib. Journal of Thai Traditional and Alternative Medicine 7: 146–155.

    Google Scholar 

  • Cho, Y.S., J.J. Oh, and K.H. Oh. 2010. Antimicrobial activity and biofilm formation inhibition of green tea polyphenols on human teeth. Biotechnology and Bioprocess Engineering 15: 359–364.

    Article  CAS  Google Scholar 

  • Cholticha, A., K. Petcharat, D. Chuchote, T. Kalaya, T. Terdphong, and C. Suwan. 2006. Effect of Cha-em Thai mouthwash on salivary levels of mutans streptococci and total IgA. The Southeast Asian Journal of Tropical Medicine and Public Health 37: 528–531.

    Google Scholar 

  • Chung, J.Y., J.H. Choo, M.H. Lee, and J.K. Hwang. 2006. Anticariogenic activity of macelignan isolated from Myristica fragrans (nutmeg) against Streptococcus mutans. Phytomedicine 13: 261–266.

    Article  PubMed  CAS  Google Scholar 

  • Clinical and Laboratory Standards Institute. 2009. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard, 8th ed. Clinical and Laboratory Standards Institute document M07-A8. Wayne: Clinical and Laboratory Standards Institute.

  • Cushnie, T.P.T., and A.J. Lamb. 2005. Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents 26: 343–356.

    Article  PubMed  CAS  Google Scholar 

  • Cushnie, T.P.T., and A.J. Lamb. 2011. Recent advances in understanding the antibacterial properties of flavonoids. International Journal of Antimicrobial Agents 38: 99–107.

    Article  PubMed  CAS  Google Scholar 

  • Duailibe, S.A.D.C., A.G. Goncalves, and F.J.M. Ahid. 2007. Effect of a propolis extract on Streptococcus mutans counts in vivo. Journal of Applied Oral Science 15: 420–423.

    Article  PubMed  Google Scholar 

  • Duarte, S., H. Koo, W.H. Bowen, M.F. Hayacibara, J.A. Cury, M. Ikegaki, and P.L. Rosalen. 2003. Effect of a novel type of propolis and its chemical fractions on glucosyltransferases and on growth and adherence of mutans streptococci. Biological and Pharmaceutical Bulletin 26: 527–531.

    Article  PubMed  CAS  Google Scholar 

  • Dzink, J.L., and S.S. Socransky. 1985. Comparative in vitro activity of sanguinarine against oral microbial isolates. Antimicrobial Agents and Chemotherapy 27: 663–665.

    Article  PubMed  CAS  Google Scholar 

  • Egualea, T., D. Tadesseb, and M. Giday. 2011. In vitro anthelmintic activity of crude extracts of five plants against egg-hatching and larval development of Haemonchus contortus. Journal of Ethnopharmacology 137: 108–113.

    Article  Google Scholar 

  • Elbaz, G.A., and I.I. Elsayad. 2012. Comparison of the antimicrobial effect of Egyptian propolis vs New Zealand propolis on Streptococcus mutans and lactobacilli in saliva. Oral Health and Preventive Dentistry 10: 155–160.

    PubMed  Google Scholar 

  • Eley, B.M. 1999. Antibacterial agents in the control of supragingival plaque: A review. British Dental Journal 186: 286–296.

    PubMed  CAS  Google Scholar 

  • Galvao, L.C.D.C., V.F. Furletti, S.M.F. Bersan, M.G. Da Cunha, A.L.T.G. Ruiz, J.E.D. Carvalho, A. Sartoratto, V.L.G. Rehder, G.M. Figueira, M.C. Teixeira Duarte, M. Ikegaki, S.M. De Alencar, and P.L. Rosalen. 2012. Antimicrobial activity of essential oils against Streptococcus mutans and their antiproliferative effects. Evidence-based Complementary and Alternative Medicine 2012: 1–12.

    Article  Google Scholar 

  • Herath, W., J.R. Mikell, and I.A. Khan. 2009. Microbial metabolism. Part 10: Metabolites of 7,8-dimethoxyflavone and 5-methoxyflavone. Natural Product Research 23(13): 1231–1239.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, J.K., J.Y. Chung, N.I. Baek, and J.H. Park. 2004. Isopanduratin a from Kaempferia pandurata as an active antibacterial agent against cariogenic Streptococcus mutans. International Journal of Antimicrobial Agents 23: 377–381.

    Article  PubMed  CAS  Google Scholar 

  • Ito, A., R. Kasai, K. Yamasaki, N.M. Duc, and N.T. Nham. 1994. Lignan glycosides from bark of Albizzia myriophylla. Phytochemistry 37: 1455–1458.

    Article  PubMed  CAS  Google Scholar 

  • Joycharat, N., S. Limsuwan, S. Subhadhirasakul, S.P. Voravuthikunchai, S. Pratumwan, I. Madahin, W. Nuankaew, and A. Promsawat. 2012. Anti-Streptococcus mutans efficacy of Thai herbal formula used as a remedy for dental caries. Pharmaceutical Biology 50(8): 941–947.

    Article  PubMed  Google Scholar 

  • Jung, M.J., S.S. Kang, Y.J. Jung, and J.S. Choi. 2004. Phenolic glycosides from the stem bark of Albizzia julibrissin. Chemical & Pharmaceutical Bulletin 52: 1501–1503.

    Article  CAS  Google Scholar 

  • Katsura, H., R.I. Tsukiyama, A. Suzuki, and M. Kobayashi. 2001. In vitro antimicrobial activities of bakuchiol against oral microorganisms. Antimicrobial Agents and Chemotherapy 45: 3009–3013.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M.J., C.S. Kim, B.H. Kim, S.B. Ro, Y.K. Lim, S.N. Park, E. Cho, J.H. Ko, S.S. Kwon, Y.M. Ko, and J.K. Kook. 2011. Antimicrobial effect of Korean propolis against the mutans streptococci isolated from Korean. Journal of Microbiology 49: 161–164.

    Article  CAS  Google Scholar 

  • Koo, H., S. Duarte, R.M. Murata, K. Scott-Anne, S. Gregoire, G.E. Watson, A.P. Singh, and N. Vorsa. 2010. Influence of cranberry proanthocyanidins on formation of biofilms by Streptococcus mutans on saliva-coated apatitic surface and on dental caries development in vivo. Caries Research 44: 116–126.

    Article  PubMed  CAS  Google Scholar 

  • Koo, H., M.F. Hayacibara, B.D. Schobel, J.A. Cury, P.L. Rosalen, Y.K. Park, A.M. Vacca-Smith, and W.H. Bowen. 2003. Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. Journal of Antimicrobial Chemotherapy 52: 782–789.

    Article  PubMed  CAS  Google Scholar 

  • Koo, H., P.L. Rosalen, J.A. Cury, Y.K. Park, and W.H. Bowen. 2002. Effects of compounds found in propolis on Streptococcus mutans growth and on glucosyltransferase activity. Antimicrobial Agents and Chemotherapy 46: 1302–1309.

    Article  PubMed  CAS  Google Scholar 

  • Kouidhi, B., T. Zmantar, and A. Bakhrouf. 2010. Anti-cariogenic and anti-biofilms activity of Tunisian propolis extract and its potential protective effect against cancer cells proliferation. Anaerobe 16: 566–571.

    Article  PubMed  CAS  Google Scholar 

  • Lam, S.K., and T.B. Ng. 2011. First report of an anti-tumor, anti-fugal, anti-yeast and anti-bacterial hemolysis from Albizia lebbeck seeds. Phytomedicine 18: 601–608.

    Article  PubMed  CAS  Google Scholar 

  • Liang, H., W.Y. Tong, Y.Y. Zhao, J.R. Cui, and G.Z. Tu. 2005. An antitumor compound julibroside J28 from Albizia julibrissin. Bioorganic & Medicinal Chemistry Letters 15: 4493–4495.

    Article  CAS  Google Scholar 

  • Liberio, S.A., A.L.A. Pereira, M.J.A.M. Araujo, R.P. Dutra, F.R.F. Nascimento, V. Monteiro-Neto, M.N.S. Ribeiro, A.G. Goncalves, and R.N.M. Guerra. 2009. The potential use of propolis as a cariostatic agent and its actions on mutans group streptococci. Journal of Ethnopharmacology 125: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Liberio, S.A., A.L.A. Pereira, R.P. Dutra, A.S. Reis, M.J.A.M. Araujo, N.S. Mattar, L.A. Silva, M.N.S. Ribeiro, F.R.F. Nascimento, R.N.M. Guerra, and V. Monteiro-Neto. 2011. Antimicrobial activity against oral pathogens and immunomodulatory effects and toxicity of geopropolis produced by the stingless bee Melipona fasciculata smith. BMC Complementary and Alternative Medicine 11: 1–10.

    Article  Google Scholar 

  • Limsuwan, S., A. Hesseling-Meinders, S.P. Voravuthikunchai, J.M. van Dijl, and O. Kayser. 2011. Potential antibiotic and anti-infective effects of rhodomyrtone from Rhodomyrtus tomentosa (Aiton) Hassk. on Streptococcus pyogenes as revealed by proteomics. Phytomedicine 18(11): 934–940.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Y.-L., Y.-L. Chen, and Y.-H. Kuo. 1991. Three new flavonoids, 3′-methoxylupinifolin, laxifolin, and isolaxifolin from the roots of Derris laxiflora benth. Chemical & Pharmaceutical Bulletin 39(12): 3132–3135.

    Article  CAS  Google Scholar 

  • Loesche, W.J. 1986. Role of Streptococcus mutans in human dental decay. Microbiological Reviews 50: 353–380.

    PubMed  CAS  Google Scholar 

  • Mahidol, C., H. Prawat, S. Ruchirawat, K. Lihkitwitayawuid, L.-Z. Lin, and G.A. Cordell. 1997. Prenylated flavanones from Derris reticulate. Phytochemistry 45(4): 825–829.

    Article  CAS  Google Scholar 

  • Matsuura, N., M. Iinuma, T. Tanaka, and M. Mizuno. 1995. Chemotaxonomic approach to the genus Euchresta based on prenylflavonoids and prenylflavanones in roots of Euchresta formosana. Biochemical Systematics and Ecology 23(5): 539–545.

    Article  CAS  Google Scholar 

  • Mascarenhas, A.K., C.M. Allen, and M.L. Moeschberger. 2002. The association between Viadent use and oral leukoplakia: Results of a matched case–control study. Journal of Public Health Dentistry 62: 158–162.

    Article  PubMed  Google Scholar 

  • Mascarenhas, A.K., C. Michael Allen, and J. Loudon. 2001. The association between Viadent use and oral leukoplakia. Epidemiology 12: 741–743.

    Article  PubMed  CAS  Google Scholar 

  • Medical Registration Division. 1998. Traditional Medicine Textbook (Thai Drug). Bangkok: Office of the Permanent Secretary for Public Health, Ministry of Public Health.

  • Newman, D.J., G.M. Cragg, and K.M. Snader. 2003. Natural products as sources of new drugs over the period. Journal of Natural Products 66: 1022–1037.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, T. 1988. Phenolic compounds of the mulberry tree and related plants. Fortschritte der Chemie Organischer Naturstoffe 53: 87–201.

    Article  PubMed  CAS  Google Scholar 

  • Otake, S., M. Makimura, T. Kuroki, Y. Nishihara, and M. Hirasawa. 1991. Anticaries effects of polyphenolic compounds from Japanese green tea. Caries Research 25: 438–443.

    Article  PubMed  CAS  Google Scholar 

  • Panmei, C., P.K. Singh, S. Gautam, P.S. Variyar, G.A.S. Devi, and A. Sharma. 2007. Phenolic acids in Albizia bark used as a starter for rice fermentation in Zou preparation. Journal of Food, Agriculture and Environment 5: 147–150.

    CAS  Google Scholar 

  • Park, K.M., J.S. You, H.Y. Lee, N.I. Baek, J.K. Hwang, and G. Kuwanon. 2003. An antibacterial agent from the root bark of Morus alba against oral pathogens. Journal of Ethnopharmacology 84: 181–185.

    Article  PubMed  CAS  Google Scholar 

  • Park, Y.K., M.H. Koo, J.A.S. Abreu, M. Ikegaki, J.A. Cury, and P.L. Rosalen. 1998a. Antimicrobial activity of propolis on oral microorganisms. Current Microbiology 36: 24–28.

    Article  PubMed  CAS  Google Scholar 

  • Park, Y.K., M.H. Koo, M. Ikegaki, J.A. Cury, and P.L. Rosalen. 1998b. Effects of propolis on Streptococcus mutans, Actinomyces naeslundii and Staphylococcus aureus. Revista de Microbiologia 29: 143–148.

    Google Scholar 

  • Prabu, G.R., A. Gnanamani, and S. Sadulla. 2006. Guaijaverin—a plant flavonoid as potential antiplaque agent against Streptococcus mutans. Journal of Applied Microbiology 101: 487–495.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, W.F., S. McLene, J. Poplawski, R.G. Enriguez, L.I. Escobar, and I. Leon. 1986. Total assignment of 13C and 1H spectra of three isomeric triterpenol derivatives by 2D NMR: An investigation of the potential utility of 1H chemical shifts in structural assignments of complex natural products. Tetrahedron 42: 3419–3428.

    Article  CAS  Google Scholar 

  • Rhama, S., and S. Madhavan. 2011. Antibacterial activity of the flavonoid, patulitrin isolated from the flowers of Tagetes erecta L. International Journal of PharmTech Research 3: 1407–1409.

    CAS  Google Scholar 

  • Rukunga, G.M., F.W. Muregi, F.M. Tolo, S.A. Omar, P. Mwitari, C.N. Muthaura, F. Omlin, W. Lwande, A. Hassanali, J. Githure, F.W. Iraqi, G.M. Mungai, W. Kraus, and W.M. Kofi-Tsekpo. 2007. The antiplasmodial activity of spermine alkaloids isolated from Albizia gummifera. Fitoterapia 78: 455–459.

    Article  PubMed  CAS  Google Scholar 

  • Sakanaka, S., M. Kim, M. Taniguchi, and T. Yamamoto. 1989. Antibacterial substances in Japanese green tea extract against Streptococcus mutans, a cariogenic bacterium. Agricultural and Biological Chemistry 53: 2307–2311.

    Article  CAS  Google Scholar 

  • Smalberger, T.M., R. Vleggaar, and J. Weber. 1974. Flavonoids from Tephrosia-VII: The constitution and absolute configuration of lupinifolin and lupinifolinol, two flavanones from Tephrosia lupinifolia burch (DC). Tetrahedron 30(21): 3927–3931.

    Article  CAS  Google Scholar 

  • Song, J.-H., S.-K. Kim, K.-W. Chang, S.-K. Han, H.-K. Yi, and J.-G. Jeon. 2006a. In vitro inhibitory effects of Polygonum cuspidatumon bacterial viability and virulence factors of Streptococcus mutans and Streptococcus sobrinus. Archives of Oral Biology 51(12): 1131–1140.

    Article  PubMed  Google Scholar 

  • Song, J.-H., T.-C. Yang, K.-W. Chang, S.-K. Han, H.-K. Yi, and J.-G. Jeon. 2006b. In vitro anti-cariogenic activity of dichloromethane fraction from Rheum undulatum L. root. Archives of Pharmacal Research 29(6): 490–496.

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam, P., U. Eswara, and K.R. Maheshwar Reddy. 2012. Effect of different types of tea on Streptococcus mutans: An in vitro study. Indian Journal of Dental Research 23: 43–48.

    Article  PubMed  Google Scholar 

  • Tahir, A., and R. Moeen. 2011. Comparison of antibacterial activity of water and ethanol extracts of Camellia sinensis (L.) kuntze against dental caries and detection of antibacterial components. Journal of Medicinal Plant Research 5: 4504–4510.

    CAS  Google Scholar 

  • Tang, W., and G. Eisenbrand. 2011. Handbook of Chinese medicinal plants. Weinheim: Wiley.

    Google Scholar 

  • Tanzer, J.M. 1995. Dental caries is a transmissible infectious disease: The Keyes and Fitzgerald revolution. Journal of Dental Research 74: 1536–1542.

    Article  PubMed  CAS  Google Scholar 

  • Ugur, A., and T. Arslan. 2004. An in vitro study on antimicrobial activity of propolis from Mugla province of Turkey. Journal of Medicinal Food 7: 90–94.

    Article  PubMed  CAS  Google Scholar 

  • Venkatesh, P., P.K. Mukherjee, N.S. Kumar, A. Bandyopadhyay, H. Fukui, H. Mizuguchi, and N. Islam. 2010. Anti-allergic activity of standardized extract of Albizia lebbeck with reference to catechin as a phytomarker. Immunopharmacology and Immunotoxicology 32: 272–276.

    Article  PubMed  CAS  Google Scholar 

  • Watt, J.M., and M.G. Breyer-Brandwijk. 1962. Medicinal and poisonous plants of South and East Africa, 2nd ed. Edinburgh: Livingstone.

    Google Scholar 

  • Yoon, H., S. Eom, J. Hyun, G. Jo, D. Hwang, S. Lee, Y. Yong, J.C. Park, Y.H. Lee, and Y. Lim. 2011. 1H and 13C NMR data on hydroxy/methoxy flavonoids and the effects of substituents on chemical shifts. Bulletin of the Korean Chemical Society 32(6): 2101–2104.

    Article  CAS  Google Scholar 

  • Yoshikawa, M., T. Morikawa, K. Nakano, Y. Pongpiriyadacha, T. Murakami, and H. Matsuda. 2002. Characterization of new sweet triterpene saponins from Albizia myriophylla. Journal of Natural Products 65: 1638–1642.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., A.K. Samadi, K.V. Rao, M.S. Cohen, and B.N. Timmermann. 2011. Cytotoxic oleanane-type saponins from Albizia inundata. Journal of Natural Products 74: 477–482.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, C.-J., H.-W. Oh, and A.-G. Kim. 2010. Potent anticariogenic activity of Aceriphyllum rossii and its components, aceriphyllic acid A and 3-oxoolean-12-en-27-oic acid. Journal of Food Science 75(2): M78–M82.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This paper was supported by research funds from Prince of Songkla University, the Thailand Research Fund, and the Office of the Higher Education Commission (MRG5580107 and TTM5406815).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nantiya Joycharat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joycharat, N., Thammavong, S., Limsuwan, S. et al. Antibacterial substances from Albizia myriophylla wood against cariogenic Streptococcus mutans . Arch. Pharm. Res. 36, 723–730 (2013). https://doi.org/10.1007/s12272-013-0085-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0085-7

Keywords

Navigation