Log in

Nonlinear Patterns of Surface Elevation Change in Coastal Wetlands: the Value of Generalized Additive Models for Quantifying Rates of Change

  • Special Issue: Wetland Elevation Dynamics
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

In the face of accelerating climate change and rising sea levels, quantifying surface elevation change dynamics in coastal wetlands can help to develop a more complete understanding of the implications of sea-level rise on coastal wetland stability. The surface elevation table-marker horizon (SET-MH) approach has been widely used to quantify and characterize surface elevation change dynamics in coastal marshes and mangrove forests. Whereas past studies that utilized the SET-MH approach have most often quantified rates of surface elevation change using simple linear regression analyses, several recent studies have shown that elevation patterns can include a diverse combination of linear and non-linear patterns. Generalized additive models (GAMs) are an extension of generalized linear models (GLMs) that have previously been used to analyze a variety of complex ecological processes such as cyclical changes in water quality, species distributions, long-term patterns in wetland area change, and palaeoecological time series. Here, we use long-term SET data to demonstrate the value of generalized additive models for analyzing non-linear patterns of surface elevation change in coastal wetlands. Additionally, we illustrate how the GAM approach can be used to effectively quantify rates of elevation change at both landscape- and local site-level scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

SET data for the Shark River sites are available in Feher et al. (2022b).

References

  • Anisfeld, S.C., T.D. Hill, and D.R. Cahoon. 2016. Elevation dynamics in a restored versus a submerging salt marsh in Long Island Sound. Estuarine, Coastal and Shelf Science 170: 145–154.

    Article  Google Scholar 

  • Cahoon, D.R. 2006. A review of major storm impacts on coastal wetland elevations. Estuaries and Coasts 29: 889–898.

    Article  Google Scholar 

  • Cahoon, D.R., and J.C. Lynch. 1997. Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, USA. Mangroves and Salt Marshes 1: 173–186.

    Article  Google Scholar 

  • Cahoon, D.R., D.J. Reed, and J.W. Day Jr. 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Marine Geology 128: 1–9.

    Article  Google Scholar 

  • Cahoon, D.R., J.C. Lynch, P.F. Hensel, R.M. Boumans, B.C. Perez, B.B. Segura, and J.W. Day Jr. 2002a. High-precision measurements of wetland sediment elevation: I. Recent improvements to the sedimentation-erosion table. Journal of Sedimentary Research 72: 730–733.

    Article  Google Scholar 

  • Cahoon, D.R., J.C. Lynch, B.C. Perez, B.D. Segura, R.D. Holland, C. Stelly, G. Stephenson, and P.F. Hensel. 2002b. High-precision measurements of wetland sediment elevation: II. The rod surface elevation table. Journal of Sedimentary Research 72: 734–739.

    Article  CAS  Google Scholar 

  • Cahoon, D.R., P.F. Hensel, T. Spencer, D.J. Reed, K.L. McKee, and N. Saintilan. 2006. Coastal wetland vulnerability to relative sea-level rise: Wetland elevation trends and process controls. In Wetlands and natural resource management, ed. J.T.A. Verhoeven, B. Beltman, R. Bobbink, and D.F. Whigham, 271–292. Berlin: Springer.

    Chapter  Google Scholar 

  • Cahoon, D.R., B.C. Perez, B.D. Segura, and J.C. Lynch. 2011. Elevation trends and shrink–swell response of wetland soils to flooding and drying. Estuarine, Coastal and Shelf Science 91: 463–474.

    Article  Google Scholar 

  • Cahoon, D.R., J.C. Lynch, C.T. Roman, J.P. Schmit, and D.E. Skidds. 2019. Evaluating the relationship among wetland vertical development, elevation capital, sea-level rise, and tidal marsh sustainability. Estuaries and Coasts 42: 1–15.

    Article  CAS  Google Scholar 

  • Callaway, J.C., D.R. Cahoon, and J.C. Lynch. 2013. The surface elevation table-marker horizon method for measuring wetland accretion and elevation dynamics. In Methods in biogeochemistry of wetlands, ed. R.D. DeLaune, K. Reddy, C. Richardson, and J.P. Megonigal, 901–917. Madison, WI: Soil Science Society of America.

    Google Scholar 

  • Coronado-Molina, C., H. Alvarez-Guillen, J.W. Day, E. Reyes, B.C. Perez, F. Vera-Herrera, and R. Twilley. 2012. Litterfall dynamics in carbonate and deltaic mangrove ecosystems in the Gulf of Mexico. Wetlands Ecology and Management 20: 123–136.

    Article  CAS  Google Scholar 

  • Couvillion, B.R., H. Beck, D. Schoolmaster, and M. Fischer. 2017. Land area change in coastal Louisiana 1932 to 2016. In U.S. geological survey scientific investigations map 3381, 16: U.S. Geological Survey.

  • Drexler, M., and C.H. Ainsworth. 2013. Generalized additive models used to predict species abundance in the Gulf of Mexico: An ecosystem modeling tool. PLoS ONE 8: e64458.

    Article  CAS  Google Scholar 

  • Feher, L.C., M.J. Osland, G.H. Anderson, W.C. Vervaeke, K.W. Krauss, K.R.T. Whelan, K.M. Balentine, G. Tiling-Range, T.J. Smith, and D.R. Cahoon. 2020. The long-term effects of hurricanes Wilma and Irma on soil elevation change in Everglades mangrove forests. Ecosystems 23: 917–931.

    Article  Google Scholar 

  • Feher, L.C., M.J. Osland, and G.H. Anderson. 2019. Everglades National Park sediment elevation and marker horizon data release, ver 2.0. U.S. Geological Survey data release. https://doi.org/10.5066/F7348HNP.

  • Feher, L.C., M.J. Osland, K.L. McKee, K.R. Whelan, C. Coronado-Molina, F.H. Sklar, K.W. Krauss, R.J. Howard, D.R. Cahoon, and J.C. Lynch. 2022a. Soil elevation change in mangrove forests and marshes of the Greater Everglades: A regional synthesis of surface elevation table-marker horizon (SET-MH) data. Estuaries and Coasts. https://doi.org/10.1007/s12237-022-01141-2.

  • Feher, L.C., M.J. Osland, K.L. McKee, K.W. Krauss, D.R. Cahoon, J.C. Lynch, G.H. Anderson, W.C. Vervaeke, and T.J. Smith III. 2022b. Soil elevation change in mangrove forests and marshes of the Greater Everglades: a regional synthesis of surface elevation table-marker horizon (SET-MH) data. U.S. Geological Survey data release. https://doi.org/10.5066/P9HKUW17.

  • Fewster, R.M., S.T. Buckland, G.M. Siriwardena, S.R. Baillie, and J.D. Wilson. 2000. Analysis of population trends for farmland birds using generalized additive models. Ecology 81: 1970–1984.

    Article  Google Scholar 

  • Guisan, A., T.C. Edwards Jr., and T. Hastie. 2002. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecological Modelling 157: 89–100.

    Article  Google Scholar 

  • Hastie, T., R. Tibshirani, and J. Friedman. 2009. The elements of statistical learning: Data mining, inference, and prediction: Springer-Verlag.

  • Hastie, T., and R. Tibshirani. 1986. Generalized additive models. Statistical Science 1: 297–310.

    Google Scholar 

  • Howard, R.J., A.S. From, K.W. Krauss, K.D. Andres, N. Cormier, L.K. Allain, and M. Savarese. 2020. Soil surface elevation dynamics in a mangrove-to-marsh ecotone characterized by vegetation shifts. Hydrobiologia 847: 1087–1106.

    Article  CAS  Google Scholar 

  • James, G., D. Witten, R. Tibshirani, and T. Hastie. 2013. An introduction to statistical learning with applications in R: Springer-Verlag.

  • Jankowski, K.L., T.E. Törnqvist, and A.M. Fernandes. 2017. Vulnerability of Louisiana’s coastal wetlands to present-day rates of relative sea-level rise. Nature Communications 8: 1–7.

    Article  Google Scholar 

  • Krauss, K.W., D.R. Cahoon, and A. J.A., K.C. Ewel, J.C. Lynch, and N. Cormier. 2010. Surface elevation change and susceptibility of different mangrove zones to sea-level rise on Pacific High Islands of Micronesia. Ecosystems 13: 129–143.

    Article  Google Scholar 

  • Krauss, K.W., N. Cormier, M.J. Osland, M.L. Kirwan, C.L. Stagg, J.A. Nestlerode, M.J. Russell, A.S. From, A.C. Spivak, and D.D. Dantin. 2017. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise. Scientific Reports 7: 1–11.

    Article  Google Scholar 

  • Large, S.I., G. Fay, K.D. Friedland, and J.S. Link. 2013. Defining trends and thresholds in responses of ecological indicators to fishing and environmental pressures. ICES Journal of Marine Science 70: 755–767.

    Article  Google Scholar 

  • Lynch, J.C., P. Hensel, and D.R. Cahoon. 2015. The surface elevation table and marker horizon technique: A protocol for monitoring wetland elevation dynamics. In Natural resource report NPS/NCBN/NRR—2015/1078. Laurel, MD: National Park Service.

  • Mariën, B., D. Papadimitriou, T. Kotilainen, P. Zuccarini, I. Dox, M. Verlinden, T. Heinecke, J. Mariën, P. Willems, M. Decoster, A. Gascó, H. Lange, J. Peñuelas, and M. Campioli. 2022. Timing leaf senescence: A generalized additive models for location, scale and shape approach. Agricultural and Forest Meteorology 315: 108823.

    Article  Google Scholar 

  • McKee, K.L. 2011. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuarine, Coastal and Shelf Science 91: 475–483.

    Article  Google Scholar 

  • McKee, K.L., and W.C. Vervaeke. 2018. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise. Global Change Biology 24: 1224–1238.

    Article  Google Scholar 

  • McKee, K.L., D.R. Cahoon, and I.C. Feller. 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography 16: 545–556.

    Article  Google Scholar 

  • Molnar, C. 2022. Interpretable machine learning: A guide for making black box models explainable. christophm.github.io/interpretable-ml-book/.

  • Moon, J.A., L.C. Feher, T.C. Lane, W.C. Vervaeke, M.J. Osland, D.M. Head, B.C. Chivoiu, D.R. Stewart, D.J. Johnson, J.B. Grace, K.L. Metzger, and N.M. Rankin. 2022. Surface elevation change dynamics in coastal marshes along the northwestern Gulf of Mexico: Building knowledge to better anticipate effects of rising sea-level and intensifying hurricanes. Wetlands 42: 49.

    Article  Google Scholar 

  • Muggeo, V.M.R. 2022. segmented. R package version 1.6.2. CRAN.R-project.org/package=segmented.

  • Murphy, R.R., E. Perry, J. Harcum, and J. Keisman. 2019. A generalized additive model approach to evaluating water quality: Chesapeake Bay case study. Environmental Modelling & Software 118: 1–13.

    Article  Google Scholar 

  • Osland, M.J., L.C. Feher, G.H. Anderson, W.C. Vervaeke, K.W. Krauss, K.R.T. Whelan, K.M. Balentine, G. Tiling-Range, T.J. Smith, and D.R. Cahoon. 2020. A tropical cyclone-induced ecological regime shift: Mangrove forest conversion to mudflat in Everglades National Park (Florida, USA). Wetlands 40: 1445–1458.

    Article  Google Scholar 

  • Pedersen, E.J., D.L. Miller, G.L. Simpson, and N. Ross. 2019. Hierarchical generalized additive models in ecology: An introduction with mgcv. PeerJ. https://doi.org/10.7717/peerj.6876.

    Article  Google Scholar 

  • R Core Team. 2021. R: A language and environment for statistical computing. R-project.org.

  • Rogers, K., and N. Saintilan. 2008. Relationships between surface elevation and groundwater in mangroves of southeast Australia. Journal of Coastal Research 24: 63–69.

    Article  Google Scholar 

  • Russell, B.T., K.A. Cressman, J.P. Schmit, S. Shull, J.M. Rybczyk, and D.L. Frost. 2022. How should surface elevation table data be analyzed? A comparison of several commonly used analysis methods and one newly proposed approach. Environmental and Ecological Statistics 29: 359–391.

    Article  Google Scholar 

  • Saintilan, N., K.E. Kovalenko, G. Guntenspergen, K. Rogers, J.C. Lynch, D.R. Cahoon, C.E. Lovelock, D.A. Friess, E. Ashe, K.W. Krauss, N. Cormier, T. Spencer, J. Adams, J. Raw, C. Ibanez, F. Scarton, S. Temmerman, P. Meire, T. Maris, K. Thorne, J. Brazner, G.L. Chmura, T. Bowron, V.P. Gamage, K. Cressman, C. Endris, C. Marconi, P. Marcum, K. St, W. Laurent, K.B. Reay, J.A. Garwood. Raposa, and N. Khan. 2022. Constraints on the adjustment of tidal marshes to accelerating sea level rise. Science 377: 523–527.

    Article  CAS  Google Scholar 

  • Sasmito, S.D., D. Murdiyarso, D.A. Friess, and S. Kurnianto. 2016. Can mangroves keep pace with contemporary sea level rise? A global data review. Wetlands Ecology and Management 24: 263–278.

    Article  Google Scholar 

  • Simpson, G.L. 2018. Modelling palaeoecological time series using generalised additive models. Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2018.00149.

    Article  Google Scholar 

  • Simpson, G.L. 2021. Gratia: Graceful ‘ggplot’-based graphics and other functions for GAMs fitted using ‘mgcv’. R package version 0.5–1. CRAN.R-project.org/package=gratia.

  • Stagg, C.L., K.W. Krauss, D.R. Cahoon, N. Cormier, W.H. Conner, and C.M. Swarzenski. 2016. Processes contributing to resilience of coastal wetlands to sea-level rise. Ecosystems 19: 1445–1459.

    Article  CAS  Google Scholar 

  • Toms, J.D., and M.L. Lesperance. 2003. Piecewise regression: A tool for identifying ecological thresholds. Ecology 84: 2034–2041.

    Article  Google Scholar 

  • Webb, E.L., D.A. Friess, K.W. Krauss, D.R. Cahoon, G.R. Guntenspergen, and J. Phelps. 2013. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Climate Change 3: 458–465.

    Article  Google Scholar 

  • Whelan, K.R.T., T.J. Smith, D.R. Cahoon, J.C. Lynch, and G.H. Anderson. 2005. Groundwater control of mangrove surface elevation: Shrink and swell varies with soil depth. Estuaries 28: 833–843.

    Article  Google Scholar 

  • Whelan, K.R.T., T.J. Smith, G.H. Anderson, and M.L. Ouellette. 2009. Hurricane Wilma’s impact on overall soil elevation and zones within the soil profile in a mangrove forest. Wetlands 29: 16–23.

    Article  Google Scholar 

  • Wood, S.N. 2017. Generalized additive models: An introduction with R. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • Wood, S.N. 2020a. Inference and computation with generalized additive models and their extensions. TEST 29: 307–339.

    Article  Google Scholar 

  • Wood, S.N., and N.H. Augustin. 2002. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecological Modelling 157: 157–177.

    Article  Google Scholar 

  • Wood, S.N. 2020b. mgcv: Mixed GAM computation vehicle with automatic smoothness estimation. R package version 1.8–33. CRAN.R-project.org/package=mgcv.

  • Yeates, A.G., J.B. Grace, J.H. Olker, G.R. Guntenspergen, D.R. Cahoon, S. Adamowicz, S.C. Anisfeld, N. Barrett, A. Benzecry, L. Blum, R.R. Christian, J. Grzyb, E.K. Harting, K.H. Leo, S. Lerberg, J.C. Lynch, N. Maher, J.P. Megonigal, W. Reay, D. Siok, A. Starke, V. Turner, and S. Warren. 2020. Hurricane Sandy effects on coastal marsh elevation change. Estuaries and Coasts 43: 1640–1657.

    Article  Google Scholar 

  • Yee, T.W., and N.D. Mitchell. 1991. Generalized additive models in plant ecology. Journal of Vegetation Science 2: 577–724.

    Article  Google Scholar 

  • Zuur, A.F., E.N. Ieno, N. Walker, A.A. Saveliev, and G.M. Smith. 2009. Mixed effects models and extensions in ecology with R. New York, NY: Springer.

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported by the U.S. Geological Survey (USGS) Greater Everglades Priority Ecosystems Science Program, the USGS Ecosystems Mission Area, and the USGS Climate R&D Program. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura C. Feher.

Additional information

Communicated by Jessica R. Lacy

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12.9 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feher, L.C., Osland, M.J., Johnson, D.J. et al. Nonlinear Patterns of Surface Elevation Change in Coastal Wetlands: the Value of Generalized Additive Models for Quantifying Rates of Change. Estuaries and Coasts (2023). https://doi.org/10.1007/s12237-023-01268-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12237-023-01268-w

Keywords

Navigation