Log in

Consignment based integrated inventory model for deteriorating goods with price- and green-sensitive demand

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Now-a-days, investment in greening in the process of manufacturing a product is extremely important for a sustainable supply chain management. Consignment stock policy have been studied for last four decades by many researchers in the development of a supply chain model. In this study, a green supply chain model for deteriorating goods with one seller and one buyer is established. The extent of greening improvement and the selling price have an impact on demand. There are two generalized green supply chain models established, one with and one without consignment stock policy. To compare the outcomes of the two models, a comprehensive computational research is conducted. The sensitivity analysis for key model-parameters is also carried out and several managerial insights are derived from it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability statement

All data are available inside the paper.

References

  1. Dey K and Saha S 2018 Influence of procurement decisions in two-period green supply chain. J. Clean. Prod. 190: 388–402

    Article  Google Scholar 

  2. Li L 2014 Managing Supply Chain and Logistics: Competitive Strategy for a Sustainable Future. World Scientific Publishing Company, Singapore

    Book  Google Scholar 

  3. Lin Y and Zhang W 2020 An incentive model between a contractor and multiple subcontractors in a green supply chain based on robust optimization. J. Manage. Anal. 7(4): 481–509

    Google Scholar 

  4. Saha S, Majumder S and Nielsen I E 2019 Is it a strategic move to subsidized consumers instead of the manufacturer? IEEE Access 7: 169807–169824

    Article  Google Scholar 

  5. Grewal D, Roggeveen A L, Sisodia R and Nordfält J 2017 Enhancing customer engagement through consciousness. J. Retail. 93(1): 55–64

    Article  Google Scholar 

  6. Motta M 1993 Endogenous quality choice: price vs. quantity competition. J. Ind. Econ. 41(2): 113

    Article  Google Scholar 

  7. Corbett C J and Karmarkar U S 2001 Competition and structure in serial supply chains with deterministic demand. Manage. Sci. 47(7): 966–978

    Article  Google Scholar 

  8. Ghosh D and Shah J 2012 A comparative analysis of greening policies across supply chain structures. Int. J. Prod. Econ. 135(2): 568–583

    Article  Google Scholar 

  9. Swami S and Shah J 2013 Channel coordination in green supply chain management. J. Oper. Res. Soc. 64(3): 336–351

    Article  Google Scholar 

  10. Zanoni S, Mazzoldi L, Zavanella L E and Jaber M Y 2014 A joint economic lot size model with price and environmentally sensitive demand. Prod. Manuf. Res. 2(1): 341–354

    Google Scholar 

  11. Ghosh D and Shah J 2015 Supply chain analysis under green sensitive consumer demand and cost sharing contract. Int. J. Prod. Econ. 164: 319–329

    Article  Google Scholar 

  12. Li B, Zhu M, Jiang Y and Li Z 2016 Pricing policies of a competitive dual-channel green supply chain. J. Clean. Prod. 112: 2029–2042

    Article  Google Scholar 

  13. Liu B, Li T and Tsai S B 2017 Low carbon strategy analysis of competing supply chains with different power structures. Sustainability 9(5): 835

    Article  Google Scholar 

  14. Giri B C, Mondal C and Maiti T 2018 Analysing a closed-loop supply chain with selling price, warranty period and green sensitive consumer demand under revenue sharing contract. J. Clean. Prod. 190: 822–837

    Article  Google Scholar 

  15. Bai Q, ** M and Xu X 2019 Effects of carbon emission reduction on supply chain coordination with vendor-managed deteriorating product inventory. Int. J. Prod. Econ. 208: 83–99

    Article  Google Scholar 

  16. Daryanto Y, Wee H M and Astanti R D 2019 Three echelon supply chain model considering carbon emission and item deterioration. Transp. Res. Part E Logist. Transp. Rev. 122: 368–383

    Article  Google Scholar 

  17. Ghosh D, Shah J and Swami S 2020 Product greening and pricing strategies of firms under green sensitive consumer demand and environmental regulations. Ann. Oper. Res. 290: 491–520

    Article  MathSciNet  Google Scholar 

  18. Huang Y S, Fang C C and Lin Y A 2020 Inventory management in supply chains with consideration of Logistics, green investment and different carbon emissions policies. Comp. Ind. Eng. 139: 106207

    Article  Google Scholar 

  19. Yu C, Qu Z, Archibald T W and Luan Z 2020 An inventory model of a deteriorating product considering carbon emissions. Comp. Ind. Eng. 148: 106694

    Article  Google Scholar 

  20. Maihami R, Ghalehkhondabi I and Ahmadi E 2021 Pricing and inventory planning for non-instantaneous deteriorating products with greening investment: a case study in beef industry. J. Clean. Prod. 295: 126368

    Article  Google Scholar 

  21. Ruidas S, Seikh M R and Nayak P K 2021 A production inventory model with interval-valued carbon emission parameters under price-sensitive demand. Comp. Ind. Eng. 154(6): 107154

    Article  Google Scholar 

  22. Hasan M R, Roy T C, Daryanto Y and Wee H M 2021 Optimizing inventory level and technology investment under a carbon tax, cap-and-trade and strict carbon limit regulations. Sust. Prod. Consump. 25: 604–621

    Google Scholar 

  23. Paul A, Pervin M, Roy S K, Maculan N and Weber G W 2022 A green inventory model with the effect of carbon taxation. Ann. Oper. Res. 309: 233–248

    Article  MathSciNet  Google Scholar 

  24. Hsiao Y L, Yu S H, Viani A, Reong S and Wee H M 2022 Vendor-managed inventory (VMI) deteriorating item model taking into account carbon emissions. Sci. Iran. Online 11th May 2022

  25. Shafiee M and Honarvar M 2023 Study the effect of carbon taxation policy on a dual channel supply chain for deteriorating products. J. Oper. Res. Soc.. https://doi.org/10.1080/01605682.2023.2209110

    Article  Google Scholar 

  26. Braglia M and Zavanella L 2003 Modeling an industrial strategy for inventory management in supply chains: the “Consignment Stock’’ case. Int. J. Prod. Res. 41: 3793–3808

    Article  Google Scholar 

  27. Zanoni S and Grubbström R W 2004 A note on an industrial strategy for stock management in supply chains: modeling and performance evaluation. Int. J. Prod. Res. 42: 4421–4426

    Article  Google Scholar 

  28. Valentini G and Zavanella L 2003 The consignment stock of inventories: industrial case and performance analysis. Int. J. Prod. Econ. 81(1): 215–224

    Article  Google Scholar 

  29. Wang Y, Jiang L and Shen Z J 2004 Channel performance under consignment contract with revenue sharing. Manage. Sci. 50: 34–47

    Article  Google Scholar 

  30. Gümüs M, Jewkes E M and Bookbinder J H 2008 Impact of consignment inventory and vendor-managed inventory for a two-party supply chain. Int. J. Prod. Econ. 113: 502–517

    Article  Google Scholar 

  31. Zavanella L and Zanoni S 2009 A one-vendor multi-buyer integrated production-inventory model: the “Consignment Stock’’ case. Int. J. Prod. Econ. 118: 225–232

    Article  Google Scholar 

  32. Li S, Zhu Z and Huang L 2009 Supply chain coordination and decision making under consignment contract with revenue sharing. Int. J. Prod. Econ. 120(1): 88–99

    Article  Google Scholar 

  33. Chen J-M, Lin I-C and Cheng H-L 2010 Channel coordination under consignment and vendor-managed inventory in a distribution system. Transp. Res. Part E Logist. Transp. Rev. 46(6): 831–843

    Article  Google Scholar 

  34. Ru J and Wang Y 2010 Consignment contracting: Who should control inventory in the supply chain? Eur. J. Oper. Res. 201(3): 760–769

    Article  Google Scholar 

  35. Battini D, Gunasekaran A, Faccio M, Persona A and Sgarbossa F 2010 Consignment stock inventory model in an integrated supply chain. Int. J. Prod. Res. 48(2): 477–500

    Article  Google Scholar 

  36. Adida E and Ratisoontorn N 2011 Consignment contracts with retail competition. Eur. J. Oper. Res. 215(1): 136–148

    Article  Google Scholar 

  37. Zanoni S, Jaber M Y and Zavanella L 2012 Vendor managed inventory (VMI) with consignment considering learning and forgetting effects. Int. J. Prod. Econ. 140(2): 721–730

    Article  Google Scholar 

  38. Wang S P, Lee W and Chang C Y 2012 Modeling the consignment inventory for a deteriorating item while the buyer has warehouse capacity constraint. Int. J. Prod. Econ. 138: 284–292

    Article  Google Scholar 

  39. Bylka S 2013 Non-cooperative consignment stock strategies for management in supply chain. Int. J. Prod. Econ. 143(2): 424–433

    Article  Google Scholar 

  40. Hariga M, Gümüs M, Ben-Daya M and Hassini E 2013 Scheduling and lot sizing models for the single-vendor multi-buyer problem under consignment stock partnership. J. Oper. Res. Soc. 64(7): 995–1009

    Article  Google Scholar 

  41. Jaber M Y, Zanoni S and Zavanella L E 2014 “Consignment Stock’’ for a two-level supply chain with entropy cost. Eur. J. Ind. Eng. 8(2): 244–272

    Article  Google Scholar 

  42. Hu W, Li Y and Govindan K 2014 The impact of consumer returns policies on consignment contracts with inventory control. Eur. J. Oper. Res. 233(2): 398–407

    Article  MathSciNet  Google Scholar 

  43. Braglia M, Castellano D and Frosolini M 2014 Safety stock management in single vendor-single buyer problem under VMI with consignment stock agreement. Int. J. Prod. Econ. 154: 16–31

    Article  Google Scholar 

  44. Lee J Y and Cho R K 2014 Contracting for vendor-managed inventory with consignment stock and stock out-cost sharing. Int. J. Prod. Econ. 151: 158–173

    Article  Google Scholar 

  45. Bazan E, Jaber M Y, Zanoni S and Zavanella L E 2014 Vendor managed inventory (VMI) with consignment stock (CS) agreement for a two-level supply chain with an imperfect production process with/without restoration interruptions. Int. J. Prod. Econ. 157(1): 289–301

    Article  Google Scholar 

  46. Sarker B R 2014 Consignment stocking policy models for supply chain systems: a critical review and comparative perspectives. Int. J. Prod. Econ. 155: 52–67

    Article  Google Scholar 

  47. Zahran S K, Jaber M Y, Zanoni S and Zavanella L E 2015 Payment schemes for a two-level consignment stock supply chain system. Comp. Ind. Eng. 87: 491–505

    Article  Google Scholar 

  48. Zahran S K and Jaber M Y 2017 Investigation of a consignment stock and a traditional inventory policy in a three-level supply chain system with multiple-suppliers and multiple-buyers. Appl. Math. Model. 44: 390–408

    Article  MathSciNet  Google Scholar 

  49. Hariga M, As’ad R and Khan Z 2017 Manufacturing-remanufacturing policies for a centralized two stage supply chain under consignment stock partnership. Int. J. Prod. Econ. 183(Part B): 362–374

    Article  Google Scholar 

  50. Ben-daya M, As’ad R and Nabi K A 2019 A single-vendor multi-buyer production remanufacturing inventory system under a centralized consignment arrangement. Comp. Ind. Eng. 135: 10–27

    Article  Google Scholar 

  51. Wang S T 2017 The construction and analysis of the 3C manufacturer-led distributor optimization consignment model using global search particle swarm optimization. Appl. Soft Comput. 60: 470–481

    Article  Google Scholar 

  52. Bieniek M 2021 The ubiquitous nature of inventory: Vendor Managed Consignment Inventory in adverse market conditions. Eur. J. Oper. Res. 291(2): 411–420

    Article  MathSciNet  Google Scholar 

  53. As’ad R, Hariga M and Alkhatib O 2019 Two stage closed loop supply chain models under consignment stock agreement and different procurement strategies. Appl. Math. Mod. 65: 164–186

    Article  MathSciNet  Google Scholar 

  54. Zhang T, Hao Y and Zhu X 2022 Consignment inventory management in a closed-loop supply chain for deteriorating items under a carbon cap-and-trade regulation. Comp. Ind. Eng. 171: 108410

    Article  Google Scholar 

  55. Hemmati M, Fatemi Ghomi S M T and Sajadieh M S 2023 A multi-echelon supply chain of deteriorating items with stock- and price-sensitive demand under consignment stock policy. Eng. Opt. 55(3): 476–493

    Article  MathSciNet  Google Scholar 

  56. Persona A, Grassi A and Catena M 2005 Consignment stock of inventories in the presence of obsolescence. Int. J. Prod. Res. 43(23): 4969–4988

    Article  Google Scholar 

  57. Battini D, Grassi A, Persona A and Sgarbossa F 2010 Consignment stock inventory policy: methodological framework and model. Int. J. Prod. Res. 48(7): 2055–2079

    Article  Google Scholar 

  58. Hemmati M, Fatemi Ghomi S M T and Sajadieh M S 2017 Vendor managed inventory with consignment stock for supply chain with stock- and price-dependent demand. Int. J. Prod. Res. 55(18): 5225–5242

    Article  Google Scholar 

  59. Lowalekar H and Basu S 2020 Theory of constraints based mafia offer for supply chains of deteriorating products. Int. J. Prod. Res. 58(14): 4421–4449

    Article  Google Scholar 

  60. Chandramohan J, Priyadhasrhini R, Chakravarthi A and Ramasamy U 2023 A comprehensive inventory management system for non-instantaneous deteriorating items in supplier-retailer-customer supply chains. Supply Chain Analytics 3: 100015

    Article  Google Scholar 

  61. Yang H-L 2023 An optimal replenishment cycle and order quantity inventory model for deteriorating items with fluctuating demand. Supply Chain Anal. 3: 100021

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referee for his comments and suggestions which have improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudarshan Bardhan.

Appendices

Appendix A

The inventory level at time t at the buyer is governed by the differential equation \(\frac{dI_b(t)}{dt}=-D-\theta _2I_b(t)=-(a-bp+\alpha \theta )-\theta _2I_b(t)\), the solution of which is \(I_b(t)=-\frac{a-bp+\alpha \theta }{\theta _2}+ce^{-\theta _2 t}\). Using initial condition \(I_b(t_p)=Q\), we get \(c=Qe^{\theta _2 t_p}+\frac{(a-bp+\alpha \theta )e^{\theta _2 t_p}}{\theta _2}\).

\(\hbox {Therefore}~~ I_b(t)=\frac{a-bp+\alpha \theta }{\theta _2}\left( e^{\theta _2(t_p-t)}-1\right) ~~~~~~~~~~~~~~~~~~~~~~~+Qe^{\theta _2(t_p-t)}\), \(t_p\le t\le 2t_p\).

Since the next shipment is scheduled at time point \(2t_p\), the initial inventory level during time interval \((2t_p, 3t_p)\) is \(I_b(2t_p)=\frac{a-bp+\alpha \theta }{\theta _2}\left( e^{-\theta _2 t_p}-1 \right) +Qe^{-\theta _2 t_p}+Q\), so that the arbitrary constant of integration c is obtained as \(c=\frac{(a-bp+\alpha \theta )e^{\theta _2 t_p}}{\theta _2}+Qe^{\theta _2 t_p}+Qe^{2\theta _2 t_p}\), and inventory level during \((2t_p\le t\le 3t_p)\) is \(I_b(t)=\frac{a-bp+\alpha \theta }{\theta _2}\left( e^{(t_p-t)\theta _2}-1\right) ~~~~~~~~~+Qe^{(t_p-t)\theta _2}\left( 1+e^{\theta _2 t_p}\right) \). In a similar manner, the inventory level in the interval \(\left[ it_p, (i+1)t_p\right] \) for \(i= 1, 2,\dots m-1\) can be obtained as \(I_b(t)=\frac{a-bp+\alpha \theta }{\theta _2}\left[ e^{-\theta _2(t-t_p)}-1 \right] ~~~~~~~~+Qe^{-\theta _2(t-t_p)}\sum _{j=0}^{i-1}e^{j\theta _2t_p}\).

Appendix B

From the average profit function

$$\begin{aligned} \begin{aligned} PR_{M1}=&\frac{1}{(m-1)t_p+t_a}\Big [p(a-bp+\alpha \theta )[(m-1)t_p\\ {}&+t_a]-S_v+P_1h_v+m(b_1+b_2Q)\\&+(mt_pP-mQ)c_d+C_pmt_pP+\pi \theta ^2\\ {}&-\big (S_b+h_bB_1+[mQ-(a-bp+\alpha \theta )\\ {}&\{(m-1)t_p+t_a\}]c_d\big )\Big ], \end{aligned} \end{aligned}$$

we obtain

$$\begin{aligned} \frac{\partial (PR_{M1})}{\partial p}= & {} \frac{1}{(m-1)t_p+t_a}\left[ (a-bp+\alpha \theta )\right. \\ {}{} & {} \left. ((m-1)t_p+t_a)-pb((m-1)t_p\right. \\ {}{} & {} \left. +t_a) -h_b\frac{\partial B_1}{\partial p}+c_d\frac{\partial S_1}{\partial p}\right] \\= & {} \frac{1}{(m-1)t_p+t_a}\left[ \left( a-2bp+\alpha \theta \right) \right. \\ {}{} & {} \left. \left( (m-1)t_p+t_a \right) -h_b\left\{ \frac{(m-1)bt_p}{\theta _2}\right. \right. \\ {}{} & {} \left. \left. -\frac{b(1-e^{-\theta _2 t_p})}{\theta _2^2}\sum _{i=0}^{m-2}e^{-i\theta _2t_p}\right. \right. \\ {}{} & {} \left. \left. +\frac{bt_a}{\theta _2}+\frac{be^{-(m-1)\theta _2 t_p}}{\theta _2^2}(e^{-\theta _2t_a}\right. \right. \\ {}{} & {} \left. \left. -1) \right\} -bc_d((m-1)t_p+t_a) \right] ,\\ \hbox {and~}\\ \frac{\partial (PR_{M1})}{\partial \theta }= & {} \frac{1}{T}\left[ p\alpha \left[ (m-1)t_p +t_a\right] -2\pi \theta \right. \\ {}{} & {} \left. -h_b\frac{\partial B_1}{\partial \theta }+c_d\frac{\partial S_1}{\partial \theta } \right] \\= & {} \frac{1}{T}\left[ p\alpha \left[ (m-1)t_p +t_a\right] -2\pi \theta \right. \\ {}{} & {} \left. -h_b\left\{ -\frac{(m-1)\alpha t_p}{\theta _2}+\right. \right. \\ {}{} & {} \left. \left. \frac{\alpha (1-e^{-\theta _2t_p})}{\theta _2^2}\sum _{i=0}^{m-2}e^{-i\theta _2t_p}-\frac{\alpha t_a}{\theta _2}\right. \right. \\ {}{} & {} \left. \left. -\frac{\alpha e^{-(m-1)\theta _2t_p}}{\theta _2^2}(e^{-\theta _2t_a}-1)\right\} \right. \\ {}{} & {} \left. +c_d\alpha \left[ (m-1)t_p +t_a\right] \right] . \end{aligned}$$

The optimal values of p and \(\theta \), i.e. \(p^*\) and \(\theta ^*\) are obtained by setting \(\frac{\partial PR_{M1}}{\partial p}=0\) and \(\frac{\partial PR_{M1}}{\partial \theta }=0\), which give

$$\begin{aligned} p^*= & {} \frac{1}{2b\left[ \left( m-1\right) t_p+t_a\right] }\left[ \left( a+\alpha \theta \right) \left[ (m-1)t_p\right. \right. \\ {}{} & {} \left. \left. +t_a\right] -h_b\left\{ \frac{(m-1)bt_p}{\theta _2}-\frac{b(1-e^{-\theta _2t_p})}{\theta _2^2}\right. \right. \\ {}{} & {} \left. \left. \sum _{i=0}^{m-2}e^{-i\theta _2t_p}+\frac{bt_a}{\theta _2}+\frac{be^{-(m-1)\theta _2t_p}}{\theta _2^2}(e^{-\theta _2t_a}\right. \right. \\ {}{} & {} \left. \left. -1) \right\} -bc_d\left[ \left( m-1\right) t_p+t_a\right] \right] ,\\ \hbox {and~}\\\theta ^{*}= & {} \frac{1}{2\pi }\left[ p\alpha \left[ \left( m-1\right) t_p+t_a\right] -h_b\right. \\ {}{} & {} \left. \left\{ -\frac{(m-1)\alpha t_p}{\theta _2}+\frac{\alpha (1-e^{-\theta _2t_p})}{\theta _2^2}\right. \right. \\ {}{} & {} \left. \left. \sum _{i=0}^{m-2}e^{-i\theta _2t_p}-\frac{\alpha t_a}{\theta _2}-\frac{\alpha e^{-(m-1)\theta _2t_p}}{\theta _2^2}(e^{-\theta _2t_a}\right. \right. \\ {}{} & {} \left. \left. -1) \right\} +c_d\alpha \left[ (m-1)t_p+t_a\right] \right] . \end{aligned}$$

Appendix C

The delay shipment starts at time \(t_p\). We consider the time point \(t_p\) as \(t=0\). The inventory level at t is governed by the differential equation \(\frac{dI_v(t)}{dt}=P-\theta _1I_v(t)\) with \(I_v(0)=0.\) The solution of the differential equation is \(I_v(t)=\frac{P}{\theta _1}+ce^{-\theta _1t}\). This gives the inventory level in the time interval \(0\le t \le t_q\) as \(I_v(t)=\frac{P}{\theta _1}\left( 1-e^{-\theta _1t}\right) \). At \(t=t_q\), \(I_v(t_q)=\frac{P}{\theta _1}\left( 1-e^{-\theta _1t_q}\right) -Q\). Now \(\frac{P}{\theta _1}+ce^{-\theta _1t_q}=\frac{P}{\theta _1}\left( 1-e^{-\theta _1t_q}\right) -Q\) gives \(c=-\frac{P}{\theta _1}-Qe^{\theta _1t_q}\), so that \(I_v(t)=\frac{P}{\theta _1}\left( 1-e^{-\theta _1t}\right) -Qe^{\theta _1(t_q-t)} \), \(t_q\le t\le 2t_q\). \(I_v(2t_q)=\frac{P}{\theta _1}\left( 1-e^{-2\theta _1t_q}\right) -Qe^{-\theta _1t_q}-Q. \) Again, \(\frac{P}{\theta _1}+ce^{-2\theta _1t_q}=\frac{P}{\theta _1}\left( 1-e^{-2\theta _1t_q}\right) -Qe^{-\theta _1t_q}-Q\), so that \(c=-\frac{P}{\theta _1}-Qe^{\theta _1t_q}-Qe^{2\theta _1t_q}\), giving \(I_v(t)=\frac{P}{\theta _1}\left( 1-e^{-\theta _1t}\right) -Qe^{\theta _1(t_q-t)} (1+e^{\theta _1t_q})\) in \(2t_q\le t \le 3t_q\).

Proceeding in the same way, we can infer that the inventory level in \((i-1)t_q \le t \le it_q ~\hbox {for}~i=1,2,\dots ,m\) is \(I_v(t)=\frac{P}{\theta _1}\left( 1-e^{-\theta _1t}\right) -Qe^{\theta _1(t_q-t)}\sum _{j=0}^{i-2}e^{j\theta _1t_q}\).

Appendix D

The total inventory \((P_2)\) can be obtained as

\(P_2=\int _{0}^{t_p}I_v(t)dt+\int _{0}^{t_q}I_v(t)dt+\int _{t_q}^{2t_q}I_v(t)dt+ \int _{2t_q}^{3t_q}I_v(t)dt+\dots +\int _{(m-1)t_q}^{mt_q}I_v(t)dt +\int _{0}^{t_q}I_v(t)dt+\int _{t_q}^{2t_q}I_v(t)dt+\int _{2t_q}^{3t_q}I_v(t)dt+\dots +\int _{(k-1)t_q}^{kt_q}I_v(t)dt\)

Now,

$$\begin{aligned} \int _{0}^{t_p}I_v(t)dt{} & {} =\int _{0}^{t_p}\left( \frac{P}{\theta _1}(1-e^{-\theta _1t})\right) dt =\frac{Pt_p}{\theta _1}+\frac{P(e^{-\theta _1t_p}-1)}{\theta _1^2} ,\\{} & {} \quad \int _{t_q}^{2t_q}\left[ \frac{P}{\theta _1}+(-\frac{P}{\theta _1}-Qe^{\theta _1t_q})e^{-\theta _1t} \right] dt\\{} & {} =\frac{Pt_q}{\theta _1}+\frac{Pe^{-\theta _1t_q}}{\theta _1^2}(e^{-\theta _1t_q}-1)+\frac{Q(e^{-\theta _1t_q}-1)}{\theta _1}, \int _{2t_q}^{3t_q}\left[ \frac{P}{\theta _1}+\left( -\frac{P}{\theta _1}-Qe^{\theta _1t_q}-Qe^{2\theta _1t_q} \right) e^{-\theta _1t} \right] dt\\{} & {} =\frac{Pt_q}{\theta _1}+\frac{Pe^{-2\theta _1t_q}}{\theta _1^2}(e^{-\theta _1t_q}-1)+\frac{Q}{\theta _1}(e^{-2\theta _1t_q}-1). \end{aligned}$$

Proceeding in the same way, we can deduce that \(\int _{(m-1)t_q}^{mt_q}I_v(t)dt=\frac{Pt_q}{\theta _1}+\frac{Pe^{-(m-1)\theta _1t_q}}{\theta _1^2}(e^{-\theta _1t_q}-1)+\frac{Q}{\theta _1}(e^{-(m-1)\theta _1t_q}-1)\). After production stops, we have

$$\begin{aligned}{} & {} \int _{0}^{t_q}\left[ \frac{P(1-e^{-\theta _1t})}{\theta _1}-Qe^{\theta _1(t_q-t)}\sum _{i=0}^{m-1}e^{i\theta _1t_q} \right] dt\\{} & {} =\frac{Pt_q}{\theta _1}+\frac{P(e^{-\theta _1t_q}-1)}{\theta _1^2}+\frac{Q}{\theta _1}(1-e^{m\theta _1t_q}), \int _{t_q}^{2t_q}\left[ \frac{P}{\theta _1}+\left\{ -\frac{P}{\theta _1}-Qe^{\theta _1t_q}\left( 1+\sum _{i=0}^{m-1}e^{i\theta _1t_q} \right) \right\} \right. \\{} & {} \quad \left. e^{-\theta _1t} \right] dt\\{} & {} =\frac{Pt_q}{\theta _1}+\frac{Pe^{-\theta _1t_q}}{\theta _1^2}(e^{-\theta _1t_q}-1)+\frac{Q}{\theta _1}(e^{-\theta _1t_q}-1)\\{} & {} \quad +\frac{Qe^{-\theta _1t_q}}{\theta _1}(1-e^{m\theta _1t_q}), \int _{2t_q}^{3t_q}\left[ \frac{P}{\theta _1}+\left\{ -\frac{P}{\theta _1}-Qe^{\theta _1t_q}\left( 1+\sum _{i=0}^{m-1}e^{i\theta _1t_q} \right) \right. \right. \\{} & {} \quad \left. \left. -Qe^{2\theta _1t_q} \right\} e^{-\theta _1t} \right] dt\\{} & {} =\frac{Pt_q}{\theta _1}+\frac{Pe^{-2\theta _1t_q}}{\theta _1^2}(e^{-\theta _1t_q}-1)+\frac{Q}{\theta _1}(e^{-2\theta _1t_q}-1)\\{} & {} \quad +\frac{Qe^{-2\theta _1t_q}}{\theta _1}(1-e^{m\theta _1t_q}), \end{aligned}$$

so that we can ultimately have

$$\begin{aligned} \int _{(k-1)t_q}^{kt_q}I_v(t)dt{} & {} =\frac{Pt_q}{\theta _1}+\frac{Pe^{-(k-1)\theta _1t_q}}{\theta _1^2}(e^{-\theta _1t_q}-1)\\{} & {} \quad +\frac{Q}{\theta _1}(e^{-(k-1)\theta _1t_q}-1)+\frac{Qe^{-(k-1)\theta _1t_q}}{\theta _1}(1-e^{m\theta _1t_q}). \end{aligned}$$

So,

$$\begin{aligned} P_2{} & {} = \frac{Pt_p}{\theta _1}+\frac{P}{\theta _1^2}(e^{-\theta _1t_p}-1)+(m+k-1)\frac{Pt_q}{\theta _1}\\{} & {} \quad +\frac{P(e^{-\theta _1t_q}-1)}{\theta _1^2}\left[ \sum _{i=0}^{m-1}e^{-i\theta _1t_q}+\sum _{i=0}^{k-1}e^{-i\theta _1t_q}\right] \\{} & {} \quad +\frac{Q}{\theta _1}\left[ \sum _{i=1}^{m-1}e^{-i\theta _1t_q}+\sum _{i=1}^{k-1}e^{-i\theta _1t_q}-(m+k\right. \\{} & {} \quad \left. -2) \right] +\frac{Q}{\theta _1}(1-e^{m\theta _1t_q})\sum _{i=0}^{k-1}e^{-i\theta _1t_q}. \end{aligned}$$

Appendix E

The profit function \((PR_{M2})\) is

$$\begin{aligned} PR_{M2}{} & {} =\frac{1}{T}\left[ p(m+k+1)(a-bp+\alpha \theta )t_q\right. \\{} & {} \quad \left. -TCV_2-TCB_2\right] \\{} & {} =\frac{1}{T}\left[ p(m+k+1)(a-bp+\alpha \theta )t_q-(S_v\right. \\{} & {} \quad \left. + c_d[P(t_p+mt_q)-(m+k+1)Q]+C_pP(t_p\right. \\{} & {} \quad \left. +mt_q)+(m+k+1)(b_1+b_2Q)+h_vP_2+\pi \theta ^2)\right. \\{} & {} \quad \left. -(S_b+c_d[(m+k-1)Q-S_2]+h_bB_2)\right] . \end{aligned}$$

Now,

$$\begin{aligned} \frac{\partial (PR{M2})}{\partial p}{} & {} =\frac{1}{T}\left[ (m+k+1)(a-bp+\alpha \theta )t_q\right. \\{} & {} \quad \left. -bp(m+k+1)t_q-h_b\frac{\partial B_2}{\partial p}+c_d\frac{\partial S_2}{\partial p}\right] \\{} & {} =\frac{1}{T}\left[ (m+k+1)(a-2bp+\alpha \theta )t_q-(m+k\right. \\{} & {} \quad \left. +1)h_b\left\{ \frac{bt_q}{\theta _2}-\frac{b(1-e^{-\theta _2t_q})}{\theta _2^2}\right\} -(m+k+1)bc_dt_q \right] , \end{aligned}$$

and \(\frac{\partial ^2 (PR_{M2})}{\partial p^2}=-2b<0\), so that the profit is maximized at \(p^*=\frac{1}{2bt_q(m+k+1)}\left[ (a+\alpha \theta )(m+k+1)t_q-h_b(m\right. \left. +k+1)\left\{ \frac{bt_q}{\theta _2}-\frac{b(1-e^{-\theta _2t_q})}{\theta _2^2} \right\} +(m+k+1)bc_dt_q \right] \). Again,

$$\begin{aligned}{} & {} \frac{\partial (PR_{M2})}{\partial \theta }=\frac{1}{T}\left[ p\alpha (m+k+1)t_q-2\pi \theta \right. \\{} & {} \quad \left. ~~~~~~~~~~~~~~~~~~~~~~~-h_b\frac{\partial B_2}{\partial \theta }+c_d\frac{\partial S_2}{\partial \theta } \right] \\{} & {} \quad =\frac{1}{T}\left[ p\alpha (m+k+1)t_q-2\pi \theta -(m+k+1)h_b\right. \\{} & {} \quad \left. \left\{ \frac{\alpha (1-e^{-\theta _2 t_q})}{\theta _2^2}-\frac{\alpha t_q}{\theta _2}\right\} +(m+k+1)c_d\alpha t_q \right] , \end{aligned}$$

and \(\frac{\partial ^2 (PR_{M2})}{\partial \theta ^2}=-2\pi <0\), so that the optimum green investment level is obtained as \(\theta ^* = \frac{1}{2\pi }\left[ (m+k+1)p\alpha t_q-(m+k+1)h_b\left\{ \frac{\alpha }{\theta _2^2}(1\right. \right. \left. \left. -e^{-\theta _2t_q})-\frac{\alpha t_q}{\theta _2} \right\} +(m+k+1)c_d\alpha t_q \right] \).

Appendix F

  1. (i)

    Straightforward to derive from (7), hence omitted.

  2. (ii)

    From (8), we have \(\frac{\partial t_q}{\partial p}=-\frac{b\theta _1}{\theta _2(\theta _1(a-bp+\alpha \theta )+P\theta _2(1-e^{-\theta _1 t_p}))} +\frac{b\theta _1}{\theta _2\theta _1(a-bp+\alpha \theta )}>0\), and \(\frac{\partial t_q}{\partial \theta }=\frac{\theta _1}{\theta _2(\theta _1(a-bp+\alpha \theta )+P\theta _2(1-e^{-\theta _1 t_p}))} -\frac{\theta _1}{\theta _2\theta _1(a-bp+\alpha \theta )}<0\).

  3. (iii)

    From (9), we have

$$\begin{aligned} \frac{\partial k}{\partial t_q}= & {} \frac{\ln [D/N]}{\theta _1t_q^2}+\frac{1}{N}\left[ 2Q\theta _1^2e^{2\theta _1t_q}-\theta _1Pe^{\theta _1t_q}\right. \\ {}{} & {} \left. -Q\theta _1^2e^{\theta _1t_q}(e^{m\theta _1t_q}-1)-mQ\theta _1^2e^{(m+1)\theta _1t_q}\right] \\{} & {} +\frac{1}{D}(P-\theta _1)Qe^{\theta _1t_q} > 0, \end{aligned}$$

Where \(N=\left[ Q\theta _1e^{2\theta _1 t_q}-P(e^{\theta _1t_q}-1)\right. \left. -Q\theta _1e^{\theta _1t_q}(e^{m\theta _1t_q}-1)\right] \) and \(D=(Q\theta _1-P)(e^{\theta _1t_q}-1)+Q\theta _1\). (iv) Straightforward, hence omitted. (v) From (3), we get

$$\begin{aligned} \frac{\partial t_a}{\partial p}=&\frac{1}{\theta _2}\left[ \frac{-be^{-(m-1)\theta _2t_p}(1-e^{-\theta _2 t_p})}{(a-bp+\alpha \theta )(1-e^{-\theta _2 t_p})e^{-(m-1)\theta _2 t_p}+Q\theta _2e^{-\theta _2 t_p}(1-e^{-(m-1)\theta _2t_p})+Q\theta _2(1-e^{-\theta _2t_p})}\right. \\ {}&\left. +\frac{b(1-e^{-\theta _2 t_p})}{(a-bp+\alpha \theta )(1-e^{-\theta _2 t_p})}\right] >0,\\ \hbox {and} \\ \frac{\partial t_a}{\partial \theta }=&\frac{1}{\theta _2}\left[ \frac{\alpha (1-e^{-\theta _2 t_p})e^{-(m-1)\theta _2t_p}}{(a-bp+\alpha \theta )(1-e^{-\theta _2 t_p})e^{-(m-1)\theta _2 t_p}+Q\theta _2e^{-\theta _2 t_p}(1-e^{-(m-1)\theta _2t_p})+Q\theta _2(1-e^{-\theta _2t_p})}\right. \\ {}&\left. -\frac{\alpha (1-e^{-\theta _2t_p})}{(a-bp+\alpha \theta )(1-e^{-\theta _2 t_p})} \right] <0. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, N., Bardhan, S. & Giri, B.C. Consignment based integrated inventory model for deteriorating goods with price- and green-sensitive demand. Sādhanā 49, 13 (2024). https://doi.org/10.1007/s12046-023-02328-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-023-02328-4

Keywords

Mathematics Subject Classification

Navigation