Log in

R-LOOPs on Short Tandem Repeat Expansion Disorders in Neurodegenerative Diseases

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Expansions of short tandem repeats (STRs) have been found to be present in more than 50 diseases and have a close connection with neurodegenerative diseases. Transcriptional silencing and R-LOOP formation, RNA-mediated sequestration of RNA-binding proteins (RBPs), gain-of-function (GOF) proteins containing expanded repeats, and repeat-associated non-AUG (RAN) translation of toxic repeat peptides are some potential molecular mechanisms underlying STR expansion disorders. R-LOOP, a byproduct of transcription, is a three-stranded nucleic acid structure with abnormal accumulation that participates in the pathogenesis of STR expansion disorders by inducing DNA damage and genome instability. R-LOOPs can engender a series of DNA damage, such as DNA double-strand breaks (DSBs), single-strand breaks (SSBs), DNA recombination, or mutations in the DNA replication, transcription, or repair processes. In this review, we provide an in-depth discussion of recent advancements in R-LOOP and systematically elaborate on its genetic destabilizing effects in several neurodegenerative diseases. These molecular mechanisms will provide novel targets for drug design and therapeutic upgrading of these devastating diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Medina A, Mahjoub Y, Shaver L, Pringsheim T (2022) Prevalence and incidence of Huntington’s disease: an updated systematic review and meta-analysis. Mov Disord Off J Mov Disord Soc 37:2327–2335. https://doi.org/10.1002/mds.29228

    Article  Google Scholar 

  2. Ruano L, Melo C, Silva MC, Coutinho P (2014) The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42:174–183. https://doi.org/10.1159/000358801

    Article  PubMed  Google Scholar 

  3. Stevanovski I, Chintalaphani SR, Gamaarachchi H, Ferguson JM, Pineda SS, Scriba CK, Tchan M, Fung V et al (2022) Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. Sci Adv 8:eabm5386. https://doi.org/10.1126/sciadv.abm5386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Talbott EO, Malek AM, Lacomis D (2016) The epidemiology of amyotrophic lateral sclerosis. Handb Clin Neurol 138:225–238. https://doi.org/10.1016/B978-0-12-802973-2.00013-6

    Article  PubMed  CAS  Google Scholar 

  5. Farg MA, Konopka A, Soo KY, Ito D, Atkin JD (2017) The DNA damage response (DDR) is induced by the C9orf72 repeat expansion in amyotrophic lateral sclerosis. Hum Mol Genet 26:2882–2896. https://doi.org/10.1093/hmg/ddx170

    Article  PubMed  CAS  Google Scholar 

  6. Malik I, Kelley CP, Wang ET, Todd PK (2021) Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat Rev Mol Cell Biol 22:589–607. https://doi.org/10.1038/s41580-021-00382-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kim A, Wang GG (2021) R-loop and its functions at the regulatory interfaces between transcription and (epi)genome. Biochim Biophys Acta Gene Regul Mech 1864:194750. https://doi.org/10.1016/j.bbagrm.2021.194750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Niehrs C, Luke B (2020) Regulatory R-loops as facilitators of gene expression and genome stability. Nat Rev Mol Cell Biol 21:167–178. https://doi.org/10.1038/s41580-019-0206-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Richard P, Manley JL (2017) R loops and links to human disease. J Mol Biol 429:3168–3180. https://doi.org/10.1016/j.jmb.2016.08.031

    Article  PubMed  CAS  Google Scholar 

  10. Sanz LA, Hartono SR, Lim YW, Steyaert S, Rajpurkar A, Ginno PA, Xu X, Chédin F (2016) Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals. Mol Cell 63:167–178. https://doi.org/10.1016/j.molcel.2016.05.032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. García-Muse T, Aguilera A (2019) R loops: from physiological to pathological roles. Cell 179:604–618. https://doi.org/10.1016/j.cell.2019.08.055

    Article  PubMed  CAS  Google Scholar 

  12. Groh M, Lufino MMP, Wade-Martins R, Gromak N (2014) R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLoS Genet 10:e1004318. https://doi.org/10.1371/journal.pgen.1004318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kannan A, Cuartas J, Gangwani P, Branzei D, Gangwani L (2022) Mutation in senataxin alters the mechanism of R-loop resolution in amyotrophic lateral sclerosis 4. Brain J Neurol 145:3072–3094. https://doi.org/10.1093/brain/awab464

    Article  Google Scholar 

  14. Reddy K, Tam M, Bowater RP, Barber M, Tomlinson M, Nichol Edamura K, Wang Y-H, Pearson CE (2011) Determinants of R-loop formation at convergent bidirectionally transcribed trinucleotide repeats. Nucleic Acids Res 39:1749–1762. https://doi.org/10.1093/nar/gkq935

    Article  PubMed  CAS  Google Scholar 

  15. Bustos BI, Billingsley K, Blauwendraat C, Gibbs JR, Gan-Or Z, Krainc D, Singleton AB, Lubbe SJ (2023) Genome-wide contribution of common short-tandem repeats to Parkinson’s disease genetic risk. Brain J Neurol 146:65–74. https://doi.org/10.1093/brain/awac301

    Article  Google Scholar 

  16. Chédin F (2016) Nascent connections: R-loops and chromatin patterning. Trends Genet TIG 32:828–838. https://doi.org/10.1016/j.tig.2016.10.002

    Article  PubMed  CAS  Google Scholar 

  17. Aguilera A, García-Muse T (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46:115–124. https://doi.org/10.1016/j.molcel.2012.04.009

    Article  PubMed  CAS  Google Scholar 

  18. Pan X, Jiang N, Chen X, Zhou X, Ding L, Duan F (2014) R-loop structure: the formation and the effects on genomic stability. Yi Chuan Hered 36:1185–1194. https://doi.org/10.3724/SP.J.1005.2014.1185

    Article  CAS  Google Scholar 

  19. Rinaldi C, Pizzul P, Longhese MP, Bonetti D (2020) Sensing R-loop-associated DNA damage to safeguard genome stability. Front Cell Dev Biol 8:618157. https://doi.org/10.3389/fcell.2020.618157

    Article  PubMed  Google Scholar 

  20. Petermann E, Lan L, Zou L (2022) Sources, resolution and physiological relevance of R-loops and RNA-DNA hybrids. Nat Rev Mol Cell Biol 23:521–540. https://doi.org/10.1038/s41580-022-00474-x

    Article  PubMed  CAS  Google Scholar 

  21. Lockhart A, Pires VB, Bento F, Kellner V, Luke-Glaser S, Yakoub G, Ulrich HD, Luke B (2019) RNase H1 and H2 are differentially regulated to process RNA-DNA hybrids. Cell Rep 29:2890-2900.e5. https://doi.org/10.1016/j.celrep.2019.10.108

    Article  PubMed  CAS  Google Scholar 

  22. Manzo SG, Hartono SR, Sanz LA, Marinello J, De Biasi S, Cossarizza A, Capranico G, Chedin F (2018) DNA topoisomerase I differentially modulates R-loops across the human genome. Genome Biol 19:100. https://doi.org/10.1186/s13059-018-1478-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ginno PA, Lott PL, Christensen HC, Korf I, Chédin F (2012) R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 45:814–825. https://doi.org/10.1016/j.molcel.2012.01.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Chen L, Chen J-Y, Zhang X, Gu Y, **ao R, Shao C, Tang P, Qian H et al (2017) R-ChIP using inactive RNase H reveals dynamic coupling of R-loops with transcriptional pausing at gene promoters. Mol Cell 68:745-757.e5. https://doi.org/10.1016/j.molcel.2017.10.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. García-Muse T, Aguilera A (2016) Transcription-replication conflicts: how they occur and how they are resolved. Nat Rev Mol Cell Biol 17:553–563. https://doi.org/10.1038/nrm.2016.88

    Article  PubMed  CAS  Google Scholar 

  26. Crossley MP, Bocek M, Cimprich KA (2019) R-Loops as cellular regulators and genomic threats. Mol Cell 73:398–411. https://doi.org/10.1016/j.molcel.2019.01.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hamperl S, Bocek MJ, Saldivar JC, Swigut T, Cimprich KA (2017) Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses. Cell 170:774-786.e19. https://doi.org/10.1016/j.cell.2017.07.043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Jones L, Houlden H, Tabrizi SJ (2017) DNA repair in the trinucleotide repeat disorders. Lancet Neurol 16:88–96. https://doi.org/10.1016/S1474-4422(16)30350-7

    Article  PubMed  CAS  Google Scholar 

  29. Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD (2010) Co-orientation of replication and transcription preserves genome integrity. PLoS Genet 6:e1000810. https://doi.org/10.1371/journal.pgen.1000810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16:2–9. https://doi.org/10.1038/ncb2897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Magdalou I, Lopez BS, Pasero P, Lambert SAE (2014) The causes of replication stress and their consequences on genome stability and cell fate. Semin Cell Dev Biol 30:154–164. https://doi.org/10.1016/j.semcdb.2014.04.035

    Article  PubMed  CAS  Google Scholar 

  32. Saponaro M, Kantidakis T, Mitter R, Kelly GP, Heron M, Williams H, Söding J, Stewart A et al (2014) RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. Cell 157:1037–1049. https://doi.org/10.1016/j.cell.2014.03.048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Groh M, Silva LM, Gromak N (2014) Mechanisms of transcriptional dysregulation in repeat expansion disorders. Biochem Soc Trans 42:1123–1128. https://doi.org/10.1042/BST20140049

    Article  PubMed  CAS  Google Scholar 

  34. Lans H, Hoeijmakers JHJ, Vermeulen W, Marteijn JA (2019) The DNA damage response to transcription stress. Nat Rev Mol Cell Biol 20:766–784. https://doi.org/10.1038/s41580-019-0169-4

    Article  PubMed  CAS  Google Scholar 

  35. Skourti-Stathaki K, Kamieniarz-Gdula K, Proudfoot NJ (2014) R-loops induce repressive chromatin marks over mammalian gene terminators. Nature 516:436–439. https://doi.org/10.1038/nature13787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Ginno PA, Lim YW, Lott PL, Korf I, Chédin F (2013) GC Skew at the 5′ and 3′ ends of human genes links R-loop formation to epigenetic regulation and transcription termination. Genome Res 23:1590–1600. https://doi.org/10.1101/gr.158436.113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. ** Z, Zinman L, Moreno D, Schymick J, Liang Y, Sato C, Zheng Y, Ghani M et al (2013) Hypermethylation of the CpG island near the G4C2 repeat in ALS with a C9orf72 expansion. Am J Hum Genet 92:981–989. https://doi.org/10.1016/j.ajhg.2013.04.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kubicek S, O’Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML, Rea S, Mechtler K et al (2007) Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 25:473–481. https://doi.org/10.1016/j.molcel.2007.01.017

    Article  PubMed  CAS  Google Scholar 

  39. Sollier J, Stork CT, García-Rubio ML, Paulsen RD, Aguilera A, Cimprich KA (2014) Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol Cell 56:777–785. https://doi.org/10.1016/j.molcel.2014.10.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(Suppl):S10-17. https://doi.org/10.1038/nm1066

    Article  PubMed  CAS  Google Scholar 

  41. Lin Y, Dent SYR, Wilson JH, Wells RD, Napierala M (2010) R Loops stimulate genetic instability of CTG.CAG repeats. Proc Natl Acad Sci USA 107:692–697. https://doi.org/10.1073/pnas.0909740107

    Article  PubMed  Google Scholar 

  42. Reddy K, Schmidt MHM, Geist JM, Thakkar NP, Panigrahi GB, Wang Y-H, Pearson CE (2014) Processing of double-R-loops in (CAG)·(CTG) and C9orf72 (GGGGCC)·(GGCCCC) repeats causes instability. Nucleic Acids Res 42:10473–10487. https://doi.org/10.1093/nar/gku658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Guler GD, Rosenwaks Z, Gerhardt J (2018) Human DNA helicase B as a candidate for unwinding secondary CGG repeat structures at the fragile X mental retardation gene. Front Mol Neurosci 11:138. https://doi.org/10.3389/fnmol.2018.00138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Voineagu I, Surka CF, Shishkin AA, Krasilnikova MM, Mirkin SM (2009) Replisome stalling and stabilization at CGG repeats, which are responsible for chromosomal fragility. Nat Struct Mol Biol 16:226–228. https://doi.org/10.1038/nsmb.1527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Brown RH, Al-Chalabi A (2017) Amyotrophic lateral sclerosis. N Engl J Med 377:162–172. https://doi.org/10.1056/NEJMra1603471

    Article  PubMed  CAS  Google Scholar 

  46. Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, Sobue G (2022) Amyotrophic lateral sclerosis. Lancet Lond Engl 400:1363–1380. https://doi.org/10.1016/S0140-6736(22)01272-7

    Article  CAS  Google Scholar 

  47. van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, van den Berg LH (2017) Amyotrophic lateral sclerosis. Lancet Lond Engl 390:2084–2098. https://doi.org/10.1016/S0140-6736(17)31287-4

    Article  Google Scholar 

  48. Taylor JP, Brown RHJ, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539:197–206. https://doi.org/10.1038/nature20413

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jaworska E, Kozlowska E, Switonski PM, Krzyzosiak WJ (2016) Modeling simple repeat expansion diseases with IPSC technology. Cell Mol Life Sci CMLS 73:4085–4100. https://doi.org/10.1007/s00018-016-2284-0

    Article  PubMed  CAS  Google Scholar 

  50. Gendron TF, Petrucelli L (2018) Disease mechanisms of C9ORF72 repeat expansions. Cold Spring Harb Perspect Med 8. https://doi.org/10.1101/cshperspect.a024224

  51. Wang J, Haeusler AR, Simko EAJ (2015) Emerging role of RNA•DNA hybrids in C9orf72-linked neurodegeneration. Cell Cycle Georget Tex 14:526–532. https://doi.org/10.1080/15384101.2014.995490

    Article  CAS  Google Scholar 

  52. Haeusler AR, Donnelly CJ, Periz G, Simko EAJ, Shaw PG, Kim M-S, Maragakis NJ, Troncoso JC et al (2014) C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507:195–200. https://doi.org/10.1038/nature13124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. ** Z, Rainero I, Rubino E, Pinessi L, Bruni AC, Maletta RG, Nacmias B, Sorbi S et al (2014) Hypermethylation of the CpG-Island near the C9orf72 G4C2-repeat expansion in FTLD patients. Hum Mol Genet 23:5630–5637. https://doi.org/10.1093/hmg/ddu279

    Article  PubMed  CAS  Google Scholar 

  54. Russ J, Liu EY, Wu K, Neal D, Suh E, Irwin DJ, McMillan CT, Harms MB et al (2015) Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier. Acta Neuropathol (Berl) 129:39–52. https://doi.org/10.1007/s00401-014-1365-0

    Article  PubMed  CAS  Google Scholar 

  55. Belzil VV, Bauer PO, Prudencio M, Gendron TF, Stetler CT, Yan IK, Pregent L, Daughrity L et al (2013) Reduced C9orf72 gene expression in C9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathol (Berl) 126:895–905. https://doi.org/10.1007/s00401-013-1199-1

    Article  PubMed  CAS  Google Scholar 

  56. Vakoc CR, Mandat SA, Olenchock BA, Blobel GA (2005) Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol Cell 19:381–391. https://doi.org/10.1016/j.molcel.2005.06.011

    Article  PubMed  CAS  Google Scholar 

  57. Cohen S, Puget N, Lin Y-L, Clouaire T, Aguirrebengoa M, Rocher V, Pasero P, Canitrot Y et al (2018) Senataxin resolves RNA:DNA hybrids forming at DNA double-strand breaks to prevent translocations. Nat Commun 9:533. https://doi.org/10.1038/s41467-018-02894-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Becherel OJ, Yeo AJ, Stellati A, Heng EYH, Luff J, Suraweera AM, Woods R, Fleming J et al (2013) Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing. PLoS Genet 9:e1003435. https://doi.org/10.1371/journal.pgen.1003435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Rawal CC, Zardoni L, Di Terlizzi M, Galati E, Brambati A, Lazzaro F, Liberi G, Pellicioli A (2020) Senataxin ortholog Sen1 limits DNA:RNA hybrid accumulation at DNA double-strand breaks to control end resection and repair fidelity. Cell Rep 31:107603. https://doi.org/10.1016/j.celrep.2020.107603

    Article  PubMed  CAS  Google Scholar 

  60. Walker C, Herranz-Martin S, Karyka E, Liao C, Lewis K, Elsayed W, Lukashchuk V, Chiang S-C et al (2017) C9orf72 expansion disrupts ATM-mediated chromosomal break repair. Nat Neurosci 20:1225–1235. https://doi.org/10.1038/nn.4604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Moreira M-C, Klur S, Watanabe M, Németh AH, Le Ber I, Moniz J-C, Tranchant C, Aubourg P et al (2004) Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat Genet 36:225–227. https://doi.org/10.1038/ng1303

    Article  PubMed  CAS  Google Scholar 

  62. Chen Y-Z, Bennett CL, Huynh HM, Blair IP, Puls I, Irobi J, Dierick I, Abel A et al (2004) DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 74:1128–1135. https://doi.org/10.1086/421054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S et al (1991) Identification of a Gene (FMR-1) Containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65:905–914. https://doi.org/10.1016/0092-8674(91)90397-h

    Article  PubMed  CAS  Google Scholar 

  64. Cabal-Herrera AM, Tassanakijpanich N, Salcedo-Arellano MJ, Hagerman RJ (2020) Fragile X-associated tremor/ataxia syndrome (FXTAS): pathophysiology and clinical implications. Int J Mol Sci 21. https://doi.org/10.3390/ijms21124391

  65. Brouwer JR, Willemsen R, Oostra BA (2009) The FMR1 gene and fragile X-associated tremor/ataxia syndrome. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet 150B:782–798. https://doi.org/10.1002/ajmg.b.30910

    Article  CAS  Google Scholar 

  66. Sidorov MS, Auerbach BD, Bear MF (2013) Fragile X mental retardation protein and synaptic plasticity. Mol Brain 6:15. https://doi.org/10.1186/1756-6606-6-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Richter JD, Zhao X (2021) The molecular biology of FMRP: new insights into fragile X syndrome. Nat Rev Neurosci 22:209–222. https://doi.org/10.1038/s41583-021-00432-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Hagerman RJ, Berry-Kravis E, Hazlett HC, Bailey DBJ, Moine H, Kooy RF, Tassone F, Gantois I et al (2017) Fragile X syndrome. Nat Rev Dis Primer 3:17065. https://doi.org/10.1038/nrdp.2017.65

    Article  Google Scholar 

  69. Hagerman RJ, Hagerman P (2016) Fragile X-associated tremor/ataxia syndrome — features, mechanisms and management. Nat Rev Neurol 12:403–412. https://doi.org/10.1038/nrneurol.2016.82

    Article  PubMed  CAS  Google Scholar 

  70. Yousuf A, Ahmed N, Qurashi A (2022) Non-canonical DNA/RNA structures associated with the pathogenesis of fragile X-associated tremor/ataxia syndrome and fragile X syndrome. Front Genet 13:866021. https://doi.org/10.3389/fgene.2022.866021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Kumari D, Usdin K (2014) Polycomb group complexes are recruited to reactivated FMR1 alleles in fragile X syndrome in response to FMR1 transcription. Hum Mol Genet 23:6575–6583. https://doi.org/10.1093/hmg/ddu378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Skourti-Stathaki K, Torlai Triglia E, Warburton M, Voigt P, Bird A, Pombo A (2019) R-loops enhance polycomb repression at a subset of developmental regulator genes. Mol Cell 73:930-945.e4. https://doi.org/10.1016/j.molcel.2018.12.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Loomis EW, Sanz LA, Chédin F, Hagerman PJ (2014) Transcription-associated R-loop formation across the human FMR1 CGG-repeat region. PLoS Genet 10:e1004294. https://doi.org/10.1371/journal.pgen.1004294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Di Ruscio A, Ebralidze AK, Benoukraf T, Amabile G, Goff LA, Terragni J, Figueroa ME, De Figueiredo Pontes LL et al (2013) DNMT1-interacting RNAs block gene-specific DNA methylation. Nature 503:371–376. https://doi.org/10.1038/nature12598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Kraan CM, Godler DE, Amor DJ (2019) Epigenetics of fragile X syndrome and fragile X-related disorders. Dev Med Child Neurol 61:121–127. https://doi.org/10.1111/dmcn.13985

    Article  PubMed  Google Scholar 

  76. Iwahashi CK, Yasui DH, An H-J, Greco CM, Tassone F, Nannen K, Babineau B, Lebrilla CB et al (2006) Protein composition of the intranuclear inclusions of FXTAS. Brain J Neurol 129:256–271. https://doi.org/10.1093/brain/awh650

    Article  CAS  Google Scholar 

  77. Walker FO (2007) Huntington’s disease. Lancet Lond Engl 369:218–228. https://doi.org/10.1016/S0140-6736(07)60111-1

    Article  CAS  Google Scholar 

  78. Tabrizi SJ, Flower MD, Ross CA, Wild EJ (2020) Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol 16:529–546. https://doi.org/10.1038/s41582-020-0389-4

    Article  PubMed  Google Scholar 

  79. Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F et al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4:398–403. https://doi.org/10.1038/ng0893-398

    Article  PubMed  CAS  Google Scholar 

  80. Finkbeiner S (2011) Huntington’s Disease. Cold Spring Harb Perspect Biol 3. https://doi.org/10.1101/cshperspect.a007476

  81. Pradhan S, Gao R, Bush K, Zhang N, Wairkar YP, Sarkar PS (2022) Polyglutamine expansion in Huntingtin and mechanism of DNA damage repair defects in Huntington’s disease. Front Cell Neurosci 16:837576. https://doi.org/10.3389/fncel.2022.837576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Gao R, Chakraborty A, Geater C, Pradhan S, Gordon KL, Snowden J, Yuan S, Dickey AS et al (2019) Mutant Huntingtin impairs PNKP and ATXN3, disrupting DNA repair and transcription. eLife 8. https://doi.org/10.7554/eLife.42988

  83. Enokido Y, Tamura T, Ito H, Arumughan A, Komuro A, Shiwaku H, Sone M, Foulle R et al (2010) Mutant Huntingtin impairs Ku70-mediated DNA repair. J Cell Biol 189:425–443. https://doi.org/10.1083/jcb.200905138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Seeberg E, Eide L, Bjørås M (1995) The base excision repair pathway. Trends Biochem Sci 20:391–397. https://doi.org/10.1016/s0968-0004(00)89086-6

    Article  PubMed  CAS  Google Scholar 

  85. Chatterjee N, Walker GC (2017) Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen 58:235–263. https://doi.org/10.1002/em.22087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Maiuri T, Suart CE, Hung CLK, Graham KJ, Barba Bazan CA, Truant R (2019) DNA damage repair in Huntington’s disease and other neurodegenerative diseases. Neurother J Am Soc Exp Neurother 16:948–956. https://doi.org/10.1007/s13311-019-00768-7

    Article  CAS  Google Scholar 

  87. Iyer RR, Pluciennik A, Napierala M, Wells RD (2015) DNA triplet repeat expansion and mismatch repair. Annu Rev Biochem 84:199–226. https://doi.org/10.1146/annurev-biochem-060614-034010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Nakamori M, Panigrahi GB, Lanni S, Gall-Duncan T, Hayakawa H, Tanaka H, Luo J, Otabe T et al (2020) A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo. Nat Genet 52:146–159. https://doi.org/10.1038/s41588-019-0575-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Perego MGL, Taiana M, Bresolin N, Comi GP, Corti S (2019) R-Loops in Motor Neuron Diseases. Mol Neurobiol 56:2579–2589. https://doi.org/10.1007/s12035-018-1246-y

    Article  PubMed  CAS  Google Scholar 

  90. Jangi M, Fleet C, Cullen P, Gupta SV, Mekhoubad S, Chiao E, Allaire N, Bennett CF et al (2017) SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage. Proc Natl Acad Sci U S A 114:E2347–E2356. https://doi.org/10.1073/pnas.1613181114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Cuartas J, Gangwani L (2022) R-loop mediated DNA damage and impaired DNA repair in spinal muscular atrophy. Front Cell Neurosci 16:826608. https://doi.org/10.3389/fncel.2022.826608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ma D, Tan YJ, Ng ASL, Ong HL, Sim W, Lim WK, Teo JX, Ng EYL et al (2020) Association of NOTCH2NLC repeat expansions with Parkinson disease. JAMA Neurol 77:1559–1563. https://doi.org/10.1001/jamaneurol.2020.3023

    Article  PubMed  Google Scholar 

  93. Shi C-H, Fan Y, Yang J, Yuan Y-P, Shen S, Liu F, Mao C-Y, Liu H et al (2021) NOTCH2NLC intermediate-length repeat expansions are associated with Parkinson disease. Ann Neurol 89:182–187. https://doi.org/10.1002/ana.25925

    Article  PubMed  CAS  Google Scholar 

  94. Klockgether T, Mariotti C, Paulson HL (2019) Spinocerebellar ataxia. Nat Rev Dis Primer 5:24. https://doi.org/10.1038/s41572-019-0074-3

    Article  Google Scholar 

  95. Seidel K, Siswanto S, Brunt ERP, den Dunnen W, Korf H-W, Rüb U (2012) Brain pathology of spinocerebellar ataxias. Acta Neuropathol (Berl) 124:1–21. https://doi.org/10.1007/s00401-012-1000-x

    Article  PubMed  CAS  Google Scholar 

  96. Dueñas AM, Goold R, Giunti P (2006) Molecular pathogenesis of spinocerebellar ataxias. Brain J Neurol 129:1357–1370. https://doi.org/10.1093/brain/awl081

    Article  Google Scholar 

  97. Rüb U, Schöls L, Paulson H, Auburger G, Kermer P, Jen JC, Seidel K, Korf H-W et al (2013) Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol 104:38–66. https://doi.org/10.1016/j.pneurobio.2013.01.001

    Article  PubMed  CAS  Google Scholar 

  98. McLoughlin HS, Moore LR, Paulson HL (2020) Pathogenesis of SCA3 and implications for other polyglutamine diseases. Neurobiol Dis 134:104635. https://doi.org/10.1016/j.nbd.2019.104635

    Article  PubMed  CAS  Google Scholar 

  99. Tian Y, Wang J-L, Huang W, Zeng S, Jiao B, Liu Z, Chen Z, Li Y et al (2019) Expansion of human-specific GGC repeat in neuronal intranuclear inclusion disease-related disorders. Am J Hum Genet 105:166–176. https://doi.org/10.1016/j.ajhg.2019.05.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Sun Q-Y, Xu Q, Tian Y, Hu Z-M, Qin L-X, Yang J-X, Huang W, Xue J et al (2020) Expansion of GGC repeat in the human-specific NOTCH2NLC gene is associated with essential tremor. Brain J Neurol 143:222–233. https://doi.org/10.1093/brain/awz372

    Article  Google Scholar 

  101. Liufu T, Zheng Y, Yu J, Yuan Y, Wang Z, Deng J, Hong D (2022) The polyG diseases: a new disease entity. Acta Neuropathol Commun 10:79. https://doi.org/10.1186/s40478-022-01383-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Oh J, Jia T, Xu J, Chong J, Dervan PB, Wang D (2022) RNA polymerase II trapped on a molecular treadmill: structural basis of persistent transcriptional arrest by a minor groove DNA binder. Proc Natl Acad Sci USA 119. https://doi.org/10.1073/pnas.2114065119

  103. Escudé C, Nguyen CH, Kukreti S, Janin Y, Sun JS, Bisagni E, Garestier T, Hélène C (1998) Rational design of a triple helix-specific intercalating ligand. Proc Natl Acad Sci U S A 95:3591–3596. https://doi.org/10.1073/pnas.95.7.3591

    Article  PubMed  PubMed Central  Google Scholar 

  104. Arya DP (2011) New approaches toward recognition of nucleic acid triple helices. Acc Chem Res 44:134–146. https://doi.org/10.1021/ar100113q

    Article  PubMed  CAS  Google Scholar 

  105. Shaw NN, Arya DP (2008) Recognition of the unique structure of DNA:RNA hybrids. Biochimie 90:1026–1039. https://doi.org/10.1016/j.biochi.2008.04.011

    Article  PubMed  CAS  Google Scholar 

  106. Groh M, Gromak N (2014) Out of balance: R-loops in human disease. PLoS Genet 10:e1004630. https://doi.org/10.1371/journal.pgen.1004630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Barbieri CM, Li T-K, Guo S, Wang G, Shallop AJ, Pan W, Yang G, Gaffney BL (2003) Aminoglycoside complexation with a DNA.RNA hybrid duplex: the thermodynamics of recognition and inhibition of RNA processing enzymes. J Am Chem Soc 125:6469–6477. https://doi.org/10.1021/ja021371d

    Article  PubMed  CAS  Google Scholar 

  108. Shaw NN, ** H, Arya DP (2008) Molecular recognition of a DNA:RNA hybrid: sub-nanomolar binding by a neomycin-methidium conjugate. Bioorg Med Chem Lett 18:4142–4145. https://doi.org/10.1016/j.bmcl.2008.05.090

    Article  PubMed  CAS  Google Scholar 

  109. Lee H-G, Imaichi S, Kraeutler E, Aguilar R, Lee Y-W, Sheridan SD, Lee JT (2023) Site-specific R-loops induce CGG repeat contraction and fragile X gene reactivation. Cell 186:2593-2609.e18. https://doi.org/10.1016/j.cell.2023.04.035

    Article  PubMed  CAS  Google Scholar 

  110. Hensel N, Detering NT, Walter LM, Claus P (2020) Resolution of pathogenic R-loops rescues motor neuron degeneration in spinal muscular atrophy. Brain J Neurol 143:2–5. https://doi.org/10.1093/brain/awz394

    Article  Google Scholar 

  111. Jauregui-Lozano J, Escobedo S, Easton A, Lanman NA, Weake VM, Hall H (2022) Proper control of R-loop homeostasis is required for maintenance of gene expression and neuronal function during aging. Aging Cell 21:e13554. https://doi.org/10.1111/acel.13554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Hashizume A, Fischbeck KH, Pennuto M, Fratta P, Katsuno M (2020) Disease mechanism, biomarker and therapeutics for spinal and bulbar muscular atrophy (SBMA). J Neurol Neurosurg Psychiatry 91:1085–1091. https://doi.org/10.1136/jnnp-2020-322949

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Excellent Youth Foundation of Hunan Province (No. 2023JJ10098), National Natural Science Foundation of China (No. 82071437), the Natural Science Foundations of Hunan Province (No. 2021JJ31115), the National Key Research and Development Program of China (No.2021YFC2501200), and the Project Program of National Clinical Research Center for Geriatric Disorders (**angya Hospital) (No.2021KFJJ10).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Qian Xu conceived the study. Material preparation, data collection, and analysis were performed by Yiting Wu and Tingwei Song. The first draft of the manuscript was written by Yiting Wu, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qian Xu.

Ethics declarations

Ethics Approval

This is a review. The ethics approval is not required.

Consent to Participate

Not applicable.

Consent for Publication

The authors affirm that human research participants provided informed consent for publication of the images in Figs. 1 and 2.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Song, T. & Xu, Q. R-LOOPs on Short Tandem Repeat Expansion Disorders in Neurodegenerative Diseases. Mol Neurobiol 60, 7185–7195 (2023). https://doi.org/10.1007/s12035-023-03531-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03531-4

Keywords

Navigation