Log in

Isobavachalcone’s Alleviation of Pyroptosis Contributes to Enhanced Apoptosis in Glioblastoma: Possible Involvement of NLRP3

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glioblastoma multiforme (GBM) is the most malignant intracranial tumor with high mortality rates and invariably poor prognosis due to its limited clinical treatments. There is an urgent need to develop new therapeutic drugs for GBM treatment. As a natural prenylated chalcone compound, Isobavachalcone (IBC)’s favorable pharmacological activities have been widely revealed. However, potential inhibitory effects of IBC on GBM have not been explored. In the present study, we aimed to detect the effects of IBC on GBM and clarify its anti-GBM mechanisms for the first time. It was observed that IBC could inhibit GBM cell proliferation, migration, and invasion in vitro and prevent tumor growth without any significant drug toxicity in both subcutaneous and orthotopic GBM xenograft tumor models in vivo. Mechanistically, IBC may target NOD-like receptor family pyrin domain-containing 3 (NLRP3) transcription factor estrogen receptor α (ESR1 gene) by network pharmacology and molecular docking analysis. Experimentally, IBC alleviated NLRP3 inflammasome-related pyroptosis and inflammation, arrested cell cycle at G1 phase, and induced mitochondria-dependent apoptosis in GBM cells. IBC’s inhibition on NLRP3 could be rescued by the NLRP3 antagonist CY-09 both in vitro and in vivo. These results indicate that IBC is a potential therapeutic drug against GBM and provide a new insight into GBM treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article. Requests for material should be made to the corresponding authors.

References

  1. Siegel R, Miller K, Fuchs H, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72(1):7–33. https://doi.org/10.3322/caac.21708

    Article  PubMed  Google Scholar 

  2. Puchalski R, Shah N, Miller J, Dalley R, Nomura S, Yoon J, Smith K, Lankerovich M et al (2018) An anatomic transcriptional Atlas of human glioblastoma. Science (New York, NY) 360(6389):660–663. https://doi.org/10.1126/science.aaf2666

    Article  CAS  Google Scholar 

  3. Shojaei S, Koleini N, Samiei E, Aghaei M, Cole L, Alizadeh J, Islam M, Vosoughi A et al (2020) Simvastatin increases temozolomide-induced cell death by targeting the fusion of autophagosomes and lysosomes. FEBS J 287(5):1005–1034. https://doi.org/10.1111/febs.15069

    Article  CAS  PubMed  Google Scholar 

  4. Ahir B, Engelhard H, Lakka S (2020) Tumor development and angiogenesis in adult brain tumor: glioblastoma. Mol Neurobiol 57(5):2461–2478. https://doi.org/10.1007/s12035-020-01892-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fletcher-Sananikone E, Kanji S, Tomimatsu N, Di Cristofaro L, Kollipara R, Saha D, Floyd J, Sung P et al (2021) Elimination of radiation-induced senescence in the brain tumor microenvironment attenuates glioblastoma recurrence. Cancer Res 81(23):5935–5947. https://doi.org/10.1158/0008-5472.Can-21-0752

    Article  CAS  PubMed  Google Scholar 

  6. Wei Y, Lu C, Zhou P, Zhao L, Lyu X, Yin J, Shi Z, You Y (2021) EIF4A3-induced circular RNA ASAP1 promotes tumorigenesis and temozolomide resistance of glioblastoma via NRAS/MEK1/ERK1-2 signaling. Neuro-oncology 23(4):611–624. https://doi.org/10.1093/neuonc/noaa214

    Article  CAS  PubMed  Google Scholar 

  7. Hanna C, Kurian K, Williams K, Watts C, Jackson A, Carruthers R, Strathdee K, Cruickshank G et al (2020) Pharmacokinetics, safety, and tolerability of olaparib and temozolomide for recurrent glioblastoma: results of the phase I OPARATIC trial. Neuro-oncology 22(12):1840–1850. https://doi.org/10.1093/neuonc/noaa104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Le Rhun E, Preusser M, Roth P, Reardon D, van den Bent M, Wen P, Reifenberger G, Weller M (2019) Molecular targeted therapy of glioblastoma. Cancer Treat Rev 80:101896. https://doi.org/10.1016/j.ctrv.2019.101896

    Article  CAS  PubMed  Google Scholar 

  9. Hanahan D (2022) Hallmarks of cancer: new dimensions. Cancer Discov 12(1):31–46. https://doi.org/10.1158/2159-8290.Cd-21-1059

    Article  CAS  PubMed  Google Scholar 

  10. Man S, Luo C, Yan M, Zhao G, Ma L, Gao W (2021) Treatment for liver cancer: from sorafenib to natural products. Eur J Med Chem 224:113690. https://doi.org/10.1016/j.ejmech.2021.113690

    Article  CAS  PubMed  Google Scholar 

  11. Bellut M, Papp L, Bieber M, Kraft P, Stoll G, Schuhmann M (2021) NLPR3 inflammasome inhibition alleviates hypoxic endothelial cell death in vitro and protects blood-brain barrier integrity in murine stroke. Cell Death Dis 13(1):20. https://doi.org/10.1038/s41419-021-04379-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang L, Hauenstein A (2020) The NLRP3 inflammasome: mechanism of action, role in disease and therapies. Mol Asp Med 76:100889. https://doi.org/10.1016/j.mam.2020.100889

    Article  CAS  Google Scholar 

  13. Christgen S, Place D, Kanneganti T (2020) Toward targeting inflammasomes: insights into their regulation and activation. Cell Res 30(4):315–327. https://doi.org/10.1038/s41422-020-0295-8

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang H, Luo Q, Feng X, Zhang R, Li J, Chen F (2018) NLRP3 promotes tumor growth and metastasis in human oral squamous cell carcinoma. BMC Cancer 18(1):500. https://doi.org/10.1186/s12885-018-4403-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Altinoz M, Elmaci İ, Hacimuftuoglu A, Ozpinar A, Hacker E, Ozpinar A (2021) PPARδ and its ligand erucic acid may act anti-tumoral, neuroprotective, and myelin protective in neuroblastoma, glioblastoma, and Parkinson’s disease. Mol Asp Med 78:100871. https://doi.org/10.1016/j.mam.2020.100871

    Article  CAS  Google Scholar 

  16. Mostafizar M, Cortes-Pérez C, Snow W, Djordjevic J, Adlimoghaddam A, Albensi B (2021) Challenges with methods for detecting and studying the transcription factor nuclear factor kappa B (NF-κB) in the central nervous system. Cells 10(6). https://doi.org/10.3390/cells10061335

  17. Liu S, Fan W, Gao X, Huang K, Ding C, Ma G, Yan L, Song S (2019) Estrogen receptor alpha regulates the Wnt/β-catenin signaling pathway in colon cancer by targeting the NOD-like receptors. Cell Signal 61:86–92. https://doi.org/10.1016/j.cellsig.2019.05.009

    Article  CAS  PubMed  Google Scholar 

  18. Ma S, Tang T, Probst G, Konradi A, ** C, Li F, Silvio Gutkind J, Fu X et al (2022) Transcriptional repression of estrogen receptor alpha by YAP reveals the Hippo pathway as therapeutic target for ER breast cancer. Nat Commun 13(1):1061. https://doi.org/10.1038/s41467-022-28691-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rusidzé M, Adlanmérini M, Chantalat E, Raymond-Letron I, Cayre S, Arnal J, Deugnier M, Lenfant F (2021) Estrogen receptor-α signaling in post-natal mammary development and breast cancers. Cell Mol Life Sci 78(15):5681–5705. https://doi.org/10.1007/s00018-021-03860-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li K, Zheng Q, Chen X, Wang Y, Wang D, Wang J (2018) Isobavachalcone induces ROS-mediated apoptosis targeting thioredoxin reductase 1 in human prostate cancer PC-3 cells. Oxidative Med Cell Longev 2018:1915828. https://doi.org/10.1155/2018/1915828

    Article  CAS  Google Scholar 

  21. Wang M, Lin L, Lu J, Chen X (2021) Pharmacological review of isobavachalcone, a naturally occurring chalcone. Pharmacol Res 165:105483. https://doi.org/10.1016/j.phrs.2021.105483

    Article  CAS  PubMed  Google Scholar 

  22. Yang Y, Zhang Y, Chen Z, Zhang Y, Yang X (2018) Plasma pharmacokinetics and cerebral nuclei distribution of major constituents of Psoraleae fructus in rats after oral administration. Phytomedicine 38:166–174. https://doi.org/10.1016/j.phymed.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  23. Wu R, Young I, Chen Y, Chuang S, Toubaji A, Wu M (2019) Identification of the PTEN-ARID4B-PI3K pathway reveals the dependency on ARID4B by PTEN-deficient prostate cancer. Nat Commun 10(1):4332. https://doi.org/10.1038/s41467-019-12184-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen J, Yu Y, Li H, Hu Q, Chen X, He Y, Xue C, Ren F et al (2019) Long non-coding RNA PVT1 promotes tumor progression by regulating the miR-143/HK2 axis in gallbladder cancer. Mol Cancer 18(1):33. https://doi.org/10.1186/s12943-019-0947-9

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shin S, Kim K, Kim H, Ylaya K, Do S, Hewitt S, Park H, Roe J et al (2020) Deubiquitylation and stabilization of Notch1 intracellular domain by ubiquitin-specific protease 8 enhance tumorigenesis in breast cancer. Cell Death Differ 27(4):1341–1354. https://doi.org/10.1038/s41418-019-0419-1

    Article  CAS  PubMed  Google Scholar 

  26. Fekry B, Ribas-Latre A, Baumgartner C, Deans J, Kwok C, Patel P, Fu L, Berdeaux R et al (2018) Incompatibility of the circadian protein BMAL1 and HNF4α in hepatocellular carcinoma. Nat Commun 9(1):4349. https://doi.org/10.1038/s41467-018-06648-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He Y, Peng S, Wang J, Chen H, Cong X, Chen A, Hu M, Qin M et al (2016) Ailanthone targets p23 to overcome MDV3100 resistance in castration-resistant prostate cancer. Nat Commun 7:13122. https://doi.org/10.1038/ncomms13122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng K, He Z, Kitazato K, Wang Y (2019) Selective autophagy regulates cell cycle in cancer therapy. Theranostics 9(1):104–125. https://doi.org/10.7150/thno.30308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shen J, Zhang T, Cheng Z, Zhu N, Wang H, Lin L, Wang Z, Yi H et al (2018) Lycorine inhibits glioblastoma multiforme growth through EGFR suppression. J Exp Clin Cancer Res 37(1):157. https://doi.org/10.1186/s13046-018-0785-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li T, Zhang W, Hu E, Sun Z, Li P, Yu Z, Zhu X, Zheng F et al (2021) Integrated metabolomics and network pharmacology to reveal the mechanisms of hydroxysafflor yellow A against acute traumatic brain injury. Comput Struct Biotechnol J 19:1002–1013. https://doi.org/10.1016/j.csbj.2021.01.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dong H, Li X, Cai M, Zhang C, Mao W, Wang Y, Xu Q, Chen M et al (2021) Integrated bioinformatic analysis reveals the underlying molecular mechanism of and potential drugs for pulmonary arterial hypertension. Aging 13(10):14234–14257. https://doi.org/10.18632/aging.203040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kochnev Y, Hellemann E, Cassidy K, Durrant J (2020) Webina: an open-source library and web app that runs AutoDock Vina entirely in the web browser. Bioinformatics (Oxford, England) 36(16):4513–4515. https://doi.org/10.1093/bioinformatics/btaa579

    Article  CAS  Google Scholar 

  33. Yi L, Juan W, Gang C, Leiming Z, Jianning Z (2020) Seawater immersion aggravates early mitochondrial dysfunction and increases neuronal apoptosis after traumatic brain injury. Cell Mol Neurobiol 40(3):447–457. https://doi.org/10.1007/s10571-019-00747-8

    Article  CAS  PubMed  Google Scholar 

  34. Kapoor S, Natarajan K, Baldwin P, Doshi K, Lapidus R, Mathias T, Scarpa M, Trotta R et al (2018) Concurrent inhibition of Pim and FLT3 kinases enhances apoptosis of FLT3-ITD acute myeloid leukemia cells through increased Mcl-1 proteasomal degradation. Clin Cancer Res 24(1):234–247. https://doi.org/10.1158/1078-0432.Ccr-17-1629

    Article  CAS  PubMed  Google Scholar 

  35. Dastghaib S, Shojaei S, Mostafavi-Pour Z, Sharma P, Patterson J, Samali A, Mokarram P, Ghavami S (2020) Simvastatin induces unfolded protein response and enhances temozolomide-induced cell death in glioblastoma cells. Cells 9(11). https://doi.org/10.3390/cells9112339

  36. Morris G, Walker A, Berk M, Maes M, Puri B (2018) Cell death pathways: a novel therapeutic approach for neuroscientists. Mol Neurobiol 55(7):5767–5786. https://doi.org/10.1007/s12035-017-0793-y

    Article  CAS  PubMed  Google Scholar 

  37. Verma A, Schwartz N, Cohen D, Boyan B, Schwartz Z (2019) Estrogen signaling and estrogen receptors as prognostic indicators in laryngeal cancer. Steroids 152:108498. https://doi.org/10.1016/j.steroids.2019.108498

    Article  CAS  PubMed  Google Scholar 

  38. **ng N, Meng X, Wang S (2022) Isobavachalcone: a comprehensive review of its plant sources, pharmacokinetics, toxicity, pharmacological activities and related molecular mechanisms. Phytotherapy research : PTR. https://doi.org/10.1002/ptr.7520

  39. Shi Y, Wu W, Huo A, Zhou W, ** X (2017) Isobavachalcone inhibits the proliferation and invasion of tongue squamous cell carcinoma cells. Oncol Lett 14(3):2852–2858. https://doi.org/10.3892/ol.2017.6517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. D’Arcy M (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43(6):582–592. https://doi.org/10.1002/cbin.11137

    Article  PubMed  Google Scholar 

  41. Tang D, Kang R, Berghe T, Vandenabeele P, Kroemer G (2019) The molecular machinery of regulated cell death. Cell Res 29(5):347–364. https://doi.org/10.1038/s41422-019-0164-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ren L, Li W, Zheng X, Liu J, Yang Y, Li S, Zhang S, Fu W et al (2022) Benzimidazoles induce concurrent apoptosis and pyroptosis of human glioblastoma cells via arresting cell cycle. Acta Pharmacol Sin 43(1):194–208. https://doi.org/10.1038/s41401-021-00752-y

    Article  CAS  PubMed  Google Scholar 

  43. **a X, Wang X, Cheng Z, Qin W, Lei L, Jiang J, Hu J (2019) The role of pyroptosis in cancer: pro-cancer or pro-"host"? Cell Death Dis 10(9):650. https://doi.org/10.1038/s41419-019-1883-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bertheloot D, Latz E, Franklin B (2021) Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol 18(5):1106–1121. https://doi.org/10.1038/s41423-020-00630-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang X, Du R, Luo N, **ang R, Shen W (2020) Aspirin mediates histone methylation that inhibits inflammation-related stemness gene expression to diminish cancer stemness via COX-independent manner. Stem Cell Res Ther 11(1):370. https://doi.org/10.1186/s13287-020-01884-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xue Z, Zhang Z, Liu H, Li W, Guo X, Zhang Z, Liu Y, Jia L et al (2019) lincRNA-Cox2 regulates NLRP3 inflammasome and autophagy mediated neuroinflammation. Cell Death Differ 26(1):130–145. https://doi.org/10.1038/s41418-018-0105-8

    Article  CAS  PubMed  Google Scholar 

  47. Zhu H, Jian Z, Zhong Y, Ye Y, Zhang Y, Hu X, Pu B, Gu L et al (2021) Janus kinase inhibition ameliorates ischemic stroke injury and neuroinflammation through reducing NLRP3 inflammasome activation JAK2/STAT3 pathway inhibition. Front Immunol 12:714943. https://doi.org/10.3389/fimmu.2021.714943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Vasconcelos N, Van Opdenbosch N, Van Gorp H, Martín-Pérez R, Zecchin A, Vandenabeele P, Lamkanfi M (2020) An apoptotic caspase network safeguards cell death induction in pyroptotic macrophages. Cell Rep 32(4):107959. https://doi.org/10.1016/j.celrep.2020.107959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang L, Song L, Zhao S, Ma C, Wu D, Wu Y (2019) Isobavachalcone reveals novel characteristics of methuosis-like cell death in leukemia cells. Chem Biol Interact 304:131–138. https://doi.org/10.1016/j.cbi.2019.03.011

    Article  CAS  PubMed  Google Scholar 

  50. Shi J, Chen Y, Chen W, Tang C, Zhang H, Chen Y, Yang X, Xu Z et al (2018) Isobavachalcone sensitizes cells to E2-induced paclitaxel resistance by down-regulating CD44 expression in ER+ breast cancer cells. J Cell Mol Med 22(11):5220–5230. https://doi.org/10.1111/jcmm.13719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vu H, Kobayashi M, Hegazy A, Tadokoro Y, Ueno M, Kasahara A, Takase Y, Nomura N et al (2018) Autophagy inhibition synergizes with calcium mobilization to achieve efficient therapy of malignant gliomas. Cancer Sci 109(8):2497–2508. https://doi.org/10.1111/cas.13695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dong Q, Wang D, Li L, Wang J, Li Q, Duan L, Yin H, Wang X et al (2022) Biochanin A sensitizes glioblastoma to temozolomide by inhibiting autophagy. Mol Neurobiol 59(2):1262–1272. https://doi.org/10.1007/s12035-021-02674-6

    Article  CAS  PubMed  Google Scholar 

  53. Wu D, Wang W, Chen W, Lian F, Lang L, Huang Y, Xu Y, Zhang N et al (2018) Pharmacological inhibition of dihydroorotate dehydrogenase induces apoptosis and differentiation in acute myeloid leukemia cells. Haematologica 103(9):1472–1483. https://doi.org/10.3324/haematol.2018.188185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. He H, Wang C, Liu G, Ma H, Jiang M, Li P, Lu Q, Li L et al (2021) Isobavachalcone inhibits acute myeloid leukemia: potential role for ROS-dependent mitochondrial apoptosis and differentiation. Phytother Res 35(6):3337–3350. https://doi.org/10.1002/ptr.7054

    Article  CAS  PubMed  Google Scholar 

  55. Li B, Xu N, Wan Z, Ma L, Li H, Cai W, Chen X, Huang Z et al (2019) Isobavachalcone exerts anti-proliferative and pro-apoptotic effects on human liver cancer cells by targeting the ERKs/RSK2 signaling pathway. Oncol Rep 41(6):3355–3366. https://doi.org/10.3892/or.2019.7090

    Article  CAS  PubMed  Google Scholar 

  56. Li Y, Qin X, Li P, Zhang H, Lin T, Miao Z, Ma S (2019) Psoralea corylifoliaIsobavachalcone isolated from inhibits cell proliferation and induces apoptosis via inhibiting the AKT/GSK-3β/β-catenin pathway in colorectal cancer cells. Drug Des Devel Ther 13:1449–1460. https://doi.org/10.2147/dddt.S192681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Yu Xuanjie in the Department of Radiology, **anning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology for the MRI operation. And we also thank Yao Qing in the Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy for her kind help in immunofluorescent confocal microscopy operation.

Funding

This work was supported by grants from the National Natural Science Foundation of China (no.81602649), the Natural Science Foundation of Hubei Province (2018CFB173), the Scientific Projects of Health Commission of Hubei Province (WJ2019Q022/WJ2021M089), the Foundation of the Hubei University of Science and Technology (2020TD04/2021-23GP04/2021WG02), National Training Program of Innovation and Entrepreneurship for Undergraduates (S201910927040/202110927002).

Author information

Authors and Affiliations

Authors

Contributions

Yueshan Wu, Ni Zhu and Meichun Hu conceived the study. Yueshan Wu, **g Chang, Juanjuan Ge, Kangyan Xu, Quan Zhou and Meichun Hu designed, performed, and analyzed experiments. Kangyan Xu performed all animal model assays for the study. Quan Zhou and **aowen Zhang provided bioinformatics analysis and reagent preparations. Ni Zhu and Meichun Hu provided critical feedback, contributed to manuscript preparation, and oversaw the research program. All authors listed reviewed the manuscript and provided feedback with writing and revisions.

Corresponding authors

Correspondence to Ni Zhu or Meichun Hu.

Ethics declarations

Human and Animal Rights and Informed Consent

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Figure 1

Wound healing assays of U87MG and U251 cells after IBC treatment. U87MG (a) and U251(b) cells were cultured until confluence, and a scratch was made in the cell layer. After IBC treatment for 48 h, images of both cells were taken by light microscope. (PNG 2.06 mb)

High Resolution Image (TIFF 47.9 mb)

ESM 1

(XLSX 13 kb)

ESM 2

(RAR 9232 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Chang, J., Ge, J. et al. Isobavachalcone’s Alleviation of Pyroptosis Contributes to Enhanced Apoptosis in Glioblastoma: Possible Involvement of NLRP3. Mol Neurobiol 59, 6934–6955 (2022). https://doi.org/10.1007/s12035-022-03010-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03010-2

Keywords

Navigation