Log in

Cuproptosis-Related Gene Signature Contributes to Prognostic Prediction and Immunosuppression in Multiple Myeloma

  • Original Article
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Cuproptosis is a type of programmed cell death triggered by accumulation of intracellular copper which was considered closely related to tumor progression. The study of cuproptosis in multiple myeloma (MM) is however limited. To determine the prognostic significance of cuproptosis-related gene signature in MM, we interrogated gene expression and overall survival with other available clinical variables from public datasets. Four cuproptosis-related genes were included to establish a prognostic survival model by least absolute shrinkage and selection operator (LASSO) Cox regression analysis, which showed a good performance on prognosis prediction in both training and validation cohorts. Patients with higher cuproptosis-related risk score (CRRS) exhibited worse prognosis compared with lower risk score. Survival prediction capacity and clinical benefit were elevated after integrating CRRS to existing prognostic stratification system (International Staging System, ISS or Revised International Staging System, RISS) both on 3-year and 5-year survival. Based on CRRS groups, functional enrichment analysis and immune infiltration in bone marrow microenvironment revealed correlation between CRRS and immunosuppression. In conclusion, our study found that cuproptosis-related gene signature is an independent poor prognostic factor and functions negatively on immune microenvironment, which provides another perspective on prognosis assessment and immunotherapy strategy in MM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Public datasets can be found here: [https://portal.gdc.cancer.gov/], [https://www.ncbi.nlm.nih.gov/geo/]. The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Brigle, K., & Rogers, B. (2017). Pathobiology and diagnosis of multiple myeloma. Seminars in Oncology Nursing, 33(3), 225–236. https://doi.org/10.1016/j.soncn.2017.05.012

    Article  PubMed  Google Scholar 

  2. Kazandjian, D. (2016). Multiple myeloma epidemiology and survival: A unique malignancy. Seminars in Oncology, 43(6), 676–681. https://doi.org/10.1053/j.seminoncol.2016.11.004

    Article  PubMed Central  PubMed  Google Scholar 

  3. Rodriguez-Otero, P., Paiva, B., & San-Miguel, J. F. (2021). Roadmap to cure multiple myeloma. Cancer Treat Rev, 100, 102284. https://doi.org/10.1016/j.ctrv.2021.102284

    Article  PubMed  Google Scholar 

  4. Davies, F. E., Pawlyn, C., Usmani, S. Z., San-Miguel, J. F., Einsele, H., Boyle, E. M., Corre, J., Auclair, D., Cho, H. J., Lonial, S., et al. (2022). Perspectives on the risk-stratified treatment of multiple myeloma. Blood Cancer Discov, 3(4), 273–284. https://doi.org/10.1158/2643-3230.Bcd-21-0205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ge, E. J., Bush, A. I., Casini, A., Cobine, P. A., Cross, J. R., DeNicola, G. M., Dou, Q. P., Franz, K. J., Gohil, V. M., Gupta, S., et al. (2022). Connecting copper and cancer: From transition metal signalling to metalloplasia. Nature Reviews Cancer, 22(2), 102–113. https://doi.org/10.1038/s41568-021-00417-2

    Article  CAS  PubMed  Google Scholar 

  6. Xue, Q., Kang, R., Klionsky, D. J., Tang, D., Liu, J., & Chen, X. (2023). Copper metabolism in cell death and autophagy. Autophagy. https://doi.org/10.1080/15548627.2023.2200554

    Article  PubMed Central  PubMed  Google Scholar 

  7. Lopez, J., Ramchandani, D., & Vahdat, L. (2019). Copper depletion as a therapeutic strategy in cancer. Met Ions Life Sci. https://doi.org/10.1515/9783110527872-018

    Article  PubMed  Google Scholar 

  8. Adeoti, M. L., Oguntola, A. S., Akanni, E. O., Agodirin, O. S., & Oyeyemi, G. M. (2015). Trace elements; copper, zinc and selenium, in breast cancer afflicted female patients in LAUTECH Osogbo Nigeria. Indian Journal of Cancer, 52(1), 106–109. https://doi.org/10.4103/0019-509x.175573

    Article  CAS  PubMed  Google Scholar 

  9. Dìez, M., Cerdàn, F. J., Arroyo, M., & Balibrea, J. L. (1989). Use of the copper/zinc ratio in the diagnosis of lung cancer. Cancer, 63(4), 726–730. https://doi.org/10.1002/1097-0142(19890215)63:4%3c726::aid-cncr2820630421%3e3.0.co;2-p

    Article  PubMed  Google Scholar 

  10. Stepien, M., Jenab, M., Freisling, H., Becker, N. P., Czuban, M., Tjønneland, A., Olsen, A., Overvad, K., Boutron-Ruault, M. C., Mancini, F. R., et al. (2017). Pre-diagnostic copper and zinc biomarkers and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. Carcinogenesis, 38(7), 699–707. https://doi.org/10.1093/carcin/bgx051

    Article  CAS  PubMed  Google Scholar 

  11. Saleh, S. A. K., Adly, H. M., Abdelkhaliq, A. A., & Nassir, A. M. (2020). Serum levels of selenium, zinc, copper, manganese, and iron in prostate cancer patients. Current Urology, 14(1), 44–49. https://doi.org/10.1159/000499261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Jiang, Y., Huo, Z., Qi, X., Zuo, T., & Wu, Z. (2022). Copper-induced tumor cell death mechanisms and antitumor theragnostic applications of copper complexes. Nanomedicine (London, England), 17(5), 303–324. https://doi.org/10.2217/nnm-2021-0374

    Article  CAS  PubMed  Google Scholar 

  13. Li, H., Wang, J., Wu, C., Wang, L., Chen, Z. S., & Cui, W. (2020). The combination of disulfiram and copper for cancer treatment. Drug Discovery Today, 25(6), 1099–1108. https://doi.org/10.1016/j.drudis.2020.04.003

    Article  CAS  PubMed  Google Scholar 

  14. Weyh, C., Krüger, K., Peeling, P., & Castell, L. (2022). The role of minerals in the optimal functioning of the immune system. Nutrients. https://doi.org/10.3390/nu14030644

    Article  PubMed Central  PubMed  Google Scholar 

  15. Stabel, J. R., & Spears, J. W. (1989). Effect of copper on immune function and disease resistance. Advances in Experimental Medicine and Biology, 258, 243–252. https://doi.org/10.1007/978-1-4613-0537-8_22

    Article  CAS  PubMed  Google Scholar 

  16. Voli, F., Valli, E., Lerra, L., Kimpton, K., Saletta, F., Giorgi, F. M., Mercatelli, D., Rouaen, J. R. C., Shen, S., Murray, J. E., et al. (2020). Intratumoral copper modulates PD-L1 Expression and Influences Tumor Immune Evasion. Cancer Research, 80(19), 4129–4144. https://doi.org/10.1158/0008-5472.Can-20-0471

    Article  CAS  PubMed  Google Scholar 

  17. Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., Rossen, J., Joesch-Cohen, L., Humeidi, R., Spangler, R. D., et al. (2022). Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, 375(6586), 1254–1261. https://doi.org/10.1126/science.abf0529

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  18. Tang, D., Chen, X., & Kroemer, G. (2022). Cuproptosis: A copper-triggered modality of mitochondrial cell death. Cell Research, 32(5), 417–418. https://doi.org/10.1038/s41422-022-00653-7

    Article  PubMed Central  PubMed  Google Scholar 

  19. Han, J., Hu, Y., Liu, S., Jiang, J., & Wang, H. (2022). A newly established cuproptosis-associated long non-coding RNA signature for predicting prognosis and indicating immune microenvironment features in soft tissue sarcoma. Journal of Oncology, 2022, 8489387. https://doi.org/10.1155/2022/8489387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Li, Z., Zhang, H., Wang, X., Wang, Q., Xue, J., Shi, Y., Wang, M., Wang, G., & Zhang, J. (2022). Identification of cuproptosis-related subtypes, characterization of tumor microenvironment infiltration, and development of a prognosis model in breast cancer. Frontiers in Immunology, 13, 996836. https://doi.org/10.3389/fimmu.2022.996836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lv, H., Liu, X., Zeng, X., Liu, Y., Zhang, C., Zhang, Q., & Xu, J. (2022). Comprehensive analysis of cuproptosis-related genes in immune infiltration and prognosis in melanoma. Frontiers in Pharmacology, 13, 930041. https://doi.org/10.3389/fphar.2022.930041

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  22. Xu, Y., Zhou, Q., Feng, X., Dai, Y., Jiang, Y., Jiang, W., Liu, X., **ng, X., Wang, Y., Ni, Y., et al. (2020). Disulfiram/copper markedly induced myeloma cell apoptosis through activation of JNK and intrinsic and extrinsic apoptosis pathways. Biomedicine & Pharmacotherapy, 126, 110048. https://doi.org/10.1016/j.biopha.2020.110048

    Article  CAS  Google Scholar 

  23. Agarwal, A., Khandelwal, A., Pal, K., Khare, N. K., Jadhav, V., Gurjar, M., Punatar, S., Gokarn, A., Bonda, A., Nayak, L., et al. (2022). A novel pro-oxidant combination of resveratrol and copper reduces transplant related toxicities in patients receiving high dose melphalan for multiple myeloma (RESCU 001). PLoS One, 17(2), e0262212. https://doi.org/10.1371/journal.pone.0262212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Liu, R., Shen, Y., Hu, J., Wang, X., Wu, D., Zhai, M., Bai, J., & He, A. (2021). Comprehensive analysis of m6A RNA methylation Regulators in the prognosis and immune microenvironment of multiple myeloma. Frontiers in Oncology, 11, 731957. https://doi.org/10.3389/fonc.2021.731957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan, L., et al. (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation (Camb), 2(3), 100141. https://doi.org/10.1016/j.xinn.2021.100141

    Article  CAS  PubMed  Google Scholar 

  26. Jia, Q., Wu, W., Wang, Y., Alexander, P. B., Sun, C., Gong, Z., Cheng, J. N., Sun, H., Guan, Y., **a, X., et al. (2018). Local mutational diversity drives intratumoral immune heterogeneity in non-small cell lung cancer. Nature Communications, 9(1), 5361. https://doi.org/10.1038/s41467-018-07767-w

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  27. Charoentong, P., Finotello, F., Angelova, M., Mayer, C., Efremova, M., Rieder, D., Hackl, H., & Trajanoski, Z. (2017). Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Reports, 18(1), 248–262. https://doi.org/10.1016/j.celrep.2016.12.019

    Article  CAS  PubMed  Google Scholar 

  28. Wallington-Beddoe, C. T., & Mynott, R. L. (2021). Prognostic and predictive biomarker developments in multiple myeloma. Journal of Hematology & Oncology, 14(1), 151. https://doi.org/10.1186/s13045-021-01162-7

    Article  Google Scholar 

  29. Szczepińska, T., Kalisiak, K., Tomecki, R., Labno, A., Borowski, L. S., Kulinski, T. M., Adamska, D., Kosinska, J., & Dziembowski, A. (2015). DIS3 shapes the RNA polymerase II transcriptome in humans by degrading a variety of unwanted transcripts. Genome Research, 25(11), 1622–1633. https://doi.org/10.1101/gr.189597.115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Boyle, E. M., Ashby, C., Tytarenko, R. G., Deshpande, S., Wang, H., Wang, Y., Rosenthal, A., Sawyer, J., Tian, E., Flynt, E., et al. (2020). BRAF and DIS3 mutations associate with adverse outcome in a long-term follow-up of patients with multiple myeloma. Clinical Cancer Research, 26(10), 2422–2432. https://doi.org/10.1158/1078-0432.Ccr-19-1507

    Article  CAS  PubMed  Google Scholar 

  31. Zhu, J., Kong, W., & **e, Z. (2021). Expression and prognostic characteristics of ferroptosis-related genes in colon cancer. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms22115652

    Article  PubMed Central  PubMed  Google Scholar 

  32. Tsvetkov, P., Detappe, A., Cai, K., Keys, H. R., Brune, Z., Ying, W., Thiru, P., Reidy, M., Kugener, G., Rossen, J., et al. (2019). Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nature Chemical Biology, 15(7), 681–689. https://doi.org/10.1038/s41589-019-0291-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Arroyo, J. D., Jourdain, A. A., Calvo, S. E., Ballarano, C. A., Doench, J. G., Root, D. E., & Mootha, V. K. (2016). A genome-wide CRISPR death screen identifies genes essential for oxidative phosphorylation. Cell Metabolism, 24(6), 875–885. https://doi.org/10.1016/j.cmet.2016.08.017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Yumnam, S., Kang, M. C., Oh, S. H., Kwon, H. C., Kim, J. C., Jung, E. S., Lee, C. H., Lee, A. Y., Hwang, J. I., & Kim, S. Y. (2021). Downregulation of dihydrolipoyl dehydrogenase by UVA suppresses melanoma progression via triggering oxidative stress and altering energy metabolism. Free Radical Biology & Medicine, 162, 77–87. https://doi.org/10.1016/j.freeradbiomed.2020.11.037

    Article  CAS  Google Scholar 

  35. Prochownik, E. V., & Wang, H. (2021). The metabolic fates of pyruvate in normal and neoplastic cells. Cells. https://doi.org/10.3390/cells10040762

    Article  PubMed Central  PubMed  Google Scholar 

  36. Deng, L., Jiang, A., Zeng, H., Peng, X., & Song, L. (2022). Comprehensive analyses of PDHA1 that serves as a predictive biomarker for immunotherapy response in cancer. Frontiers in Pharmacology, 13, 947372. https://doi.org/10.3389/fphar.2022.947372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Liggett, W. H., Jr., & Sidransky, D. (1998). Role of the p16 tumor suppressor gene in cancer. Journal of Clinical Oncology, 16(3), 1197–1206. https://doi.org/10.1200/jco.1998.16.3.1197

    Article  CAS  PubMed  Google Scholar 

  38. Bartsch, D. K., Sina-Frey, M., Lang, S., Wild, A., Gerdes, B., Barth, P., Kress, R., Grützmann, R., Colombo-Benkmann, M., Ziegler, A., et al. (2002). CDKN2A germline mutations in familial pancreatic cancer. Annals of Surgery, 236(6), 730–737. https://doi.org/10.1097/00000658-200212000-00005

    Article  PubMed Central  PubMed  Google Scholar 

  39. Sievers, P., Hielscher, T., Schrimpf, D., Stichel, D., Reuss, D. E., Berghoff, A. S., Neidert, M. C., Wirsching, H. G., Mawrin, C., Ketter, R., et al. (2020). CDKN2A/B homozygous deletion is associated with early recurrence in meningiomas. Acta Neuropathologica, 140(3), 409–413. https://doi.org/10.1007/s00401-020-02188-w

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Martínez-Baños, D., Sánchez-Hernández, B., Jiménez, G., Barrera-Lumbreras, G., & Barrales-Benítez, O. (2017). Global methylation and promoter-specific methylation of the P16, SOCS-1, E-cadherin, P73 and SHP-1 genes and their expression in patients with multiple myeloma during active disease and remission. Experimental and Therapeutic Medicine, 13(5), 2442–2450. https://doi.org/10.3892/etm.2017.4274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Mateos, M. V., García-Sanz, R., López-Pérez, R., Moro, M. J., Ocio, E., Hernández, J., Megido, M., Caballero, M. D., Fernández-Calvo, J., Bárez, A., et al. (2002). Methylation is an inactivating mechanism of the p16 gene in multiple myeloma associated with high plasma cell proliferation and short survival. British Journal of Haematology, 118(4), 1034–1040. https://doi.org/10.1046/j.1365-2141.2002.03749.x

    Article  CAS  PubMed  Google Scholar 

  42. Park, G., Kang, S. H., Lee, J. H., Suh, C., Kim, M., Park, S. M., Kim, T. Y., Oh, B., Min, H. J., Yoon, S. S., et al. (2011). Concurrent p16 methylation pattern as an adverse prognostic factor in multiple myeloma: A methylation-specific polymerase chain reaction study using two different primer sets. Annals of Hematology, 90(1), 73–79. https://doi.org/10.1007/s00277-010-1043-9

    Article  PubMed  Google Scholar 

  43. Dilworth, D., Liu, L., Stewart, A. K., Berenson, J. R., Lassam, N., & Hogg, D. (2000). Germline CDKN2A mutation implicated in predisposition to multiple myeloma. Blood, 95(5), 1869–1871.

    Article  CAS  PubMed  Google Scholar 

  44. Mitchell, J. S., Li, N., Weinhold, N., Försti, A., Ali, M., van Duin, M., Thorleifsson, G., Johnson, D. C., Chen, B., Halvarsson, B. M., et al. (2016). Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nature Communications, 7, 12050. https://doi.org/10.1038/ncomms12050

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  45. Shah, V., Boyd, K. D., Houlston, R. S., & Kaiser, M. F. (2017). Constitutional mutation in CDKN2A is associated with long term survivorship in multiple myeloma: A case report. BMC Cancer, 17(1), 718. https://doi.org/10.1186/s12885-017-3715-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Sautès-Fridman, C., Verneau, J., Sun, C. M., Moreira, M., Chen, T. W., Meylan, M., Petitprez, F., & Fridman, W. H. (2020). Tertiary Lymphoid Structures and B cells: Clinical impact and therapeutic modulation in cancer. Seminars in Immunology, 48, 101406. https://doi.org/10.1016/j.smim.2020.101406

    Article  CAS  PubMed  Google Scholar 

  47. Lopez-Yrigoyen, M., Cassetta, L., & Pollard, J. W. (2021). Macrophage targeting in cancer. Annals of the New York Academy of Sciences, 1499(1), 18–41. https://doi.org/10.1111/nyas.14377

    Article  ADS  PubMed  Google Scholar 

  48. Cui, C., Wang, J., Fagerberg, E., Chen, P. M., Connolly, K. A., Damo, M., Cheung, J. F., Mao, T., Askari, A. S., Chen, S., et al. (2021). Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell, 184(25), 6101-6118.e6113. https://doi.org/10.1016/j.cell.2021.11.007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Neefjes, J., Jongsma, M. L., Paul, P., & Bakke, O. (2011). Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nature Reviews Immunology, 11(12), 823–836. https://doi.org/10.1038/nri3084

    Article  CAS  PubMed  Google Scholar 

  50. Li, B., Chan, H. L., & Chen, P. (2019). Immune checkpoint inhibitors: Basics and challenges. Current Medicinal Chemistry, 26(17), 3009–3025. https://doi.org/10.2174/0929867324666170804143706

    Article  CAS  PubMed  Google Scholar 

  51. Wei, G., Zhang, H., Zhao, H., Wang, J., Wu, N., Li, L., Wu, J., & Zhang, D. (2021). Emerging immune checkpoints in the tumor microenvironment: Implications for cancer immunotherapy. Cancer Letters, 511, 68–76. https://doi.org/10.1016/j.canlet.2021.04.021

    Article  CAS  PubMed  Google Scholar 

  52. Caserta, S., Innao, V., Musolino, C., & Allegra, A. (2020). Immune checkpoint inhibitors in multiple myeloma: A review of the literature. Pathology Research and Practice, 216(10), 153114. https://doi.org/10.1016/j.prp.2020.153114

    Article  CAS  PubMed  Google Scholar 

  53. Salik, B., Smyth, M. J., & Nakamura, K. (2020). Targeting immune checkpoints in hematological malignancies. Journal of Hematology & Oncology, 13(1), 111. https://doi.org/10.1186/s13045-020-00947-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate all the participants and researchers for their contributions and commitment to this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HL; Methodology: HL and SC; Formal analysis and investigation: HL; Writing and original draft preparation: HL and SC; Writing, reviewing, and editing of the manuscript: HL and ML; Supervision: SC. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Huixin Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Chan, S., Li, M. et al. Cuproptosis-Related Gene Signature Contributes to Prognostic Prediction and Immunosuppression in Multiple Myeloma. Mol Biotechnol 66, 475–488 (2024). https://doi.org/10.1007/s12033-023-00770-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00770-7

Keywords

Navigation