Log in

Sushi Domain-Containing Protein 3: A Potential Target for Breast Cancer

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Aromatase inhibitors (AIs) are the most effective endocrine treatment for estrogen receptor α-positive (ERα+) postmenopausal breast cancer. Identification of biomarkers that are able to predict AIs responsiveness of patients is a key for successful treatment. The currently used biomarkers for tamoxifen responsiveness, which including ERα as well as progesterone receptor can only predict part of the potential responders to AIs treatment. Sushi domain-containing protein 3 (SUSD3) is a potential novel biomarker of AIs responsiveness. The lack of SUSD3 expression in breast cancer tissue can be an important predictor for non-responsiveness to AI. Here we reviewed the property and function of SUSD3, its usage as a biomarker and the practicability for SUSD3 to become a target for immune therapy. We suggest this protein can be potentially measured or targeted for prevention, diagnostic, and therapeutic purposes for estrogen or progesterone-dependent disorders including breast cancer in women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61, 69–90.

    Google Scholar 

  2. Bulun, S. E., Chen, D., Lu, M., et al. (2007). Aromatase excess in cancers of breast, endometrium and ovary. The Journal of Steroid Biochemistry and Molecular Biology, 106, 81–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Dumitrescu, R. G., & Cotarla, I. (2005). Understanding breast cancer risk—where do we stand in 2005? Journal of Cellular and Molecular Medicine, 9, 208–221.

    Article  CAS  PubMed  Google Scholar 

  4. Jones, M. E., Boon, W. C., McInnes, K., Maffei, L., Carani, C., & Simpson, E. R. (2007). Recognizing rare disorders: Aromatase deficiency. Nature Clinical Practice Endocrinology & Metabolism, 3, 414–421.

    Article  CAS  Google Scholar 

  5. Simpson, E. R., & Davis, S. R. (2001). Minireview: Aromatase and the regulation of estrogen biosynthesis—some new perspectives. Endocrinology, 142, 4589–4594.

    CAS  PubMed  Google Scholar 

  6. Bulun, S. E., Lin, Z., Imir, G., et al. (2005). Regulation of aromatase expression in estrogen-responsive breast and uterine disease: From bench to treatment. Pharmacological Reviews, 57, 359–383.

    Article  CAS  PubMed  Google Scholar 

  7. Shibaya, M., Matsuda, A., Hojo, T., Acosta, T. J., & Okuda, K. (2007). Expressions of estrogen receptors in the bovine corpus luteum: Cyclic changes and effects of prostaglandin F2alpha and cytokines. Journal of Reproduction and Development, 53, 1059–1068.

    Article  CAS  PubMed  Google Scholar 

  8. Zuo, Y., Berdeaux, R., & Frost, J. A. (2014). The RhoGEF Net1 is required for normal mammary gland development. Molecular Endocrinology, 28(12), 1948–1960.

    Article  PubMed  Google Scholar 

  9. Oh, Y., Rosenfeld, R., & Ingermann, A.R. (2009). Comprises nucleotide sequences coding insulin-like growth factor binding protein-3 and receptors for diagnosis, prevention and treatment of cancer; antitumor/anticarcinogenic agents. Google Patents, 2009.

  10. Bulun, S. E., Chen, D., Moy, I., Brooks, D. C., & Zhao, H. (2012). Aromatase, breast cancer and obesity: A complex interaction. Trends in Endocrinology and Metabolism: TEM, 23, 83–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Diaz-Cruz, E. S., Sugimoto, Y., Gallicano, G. I., Brueggemeier, R. W., & Furth, P. A. (2011). Comparison of increased aromatase versus ERalpha in the generation of mammary hyperplasia and cancer. Cancer Research, 71, 5477–5487.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Yamamoto, M., Hosoda, M., Nakano, K., et al. (2014). p53 accumulation is a strong predictor of recurrence in estrogen receptor-positive breast cancer patients treated with aromatase inhibitors. Cancer Science, 105, 8.

    Google Scholar 

  13. Sabnis, G., Schayowitz, A., Goloubeva, O., Macedo, L., & Brodie, A. (2009). Trastuzumab reverses letrozole resistance and amplifies the sensitivity of breast cancer cells to estrogen. Cancer Research, 69, 1416–1428.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Van Asten, K., Neven, P., Lintermans, A., Wildiers, H., & Paridaens, R. (2014). Aromatase inhibitors in the breast cancer clinic: Focus on exemestane. Endocrine-Related Cancer, 21, R31–R49.

    Article  PubMed  Google Scholar 

  15. Subik, K., Lee, J. F., Baxter, L., et al. (2010). The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer: Basic and Clinical Research, 4, 35–41.

    Google Scholar 

  16. Lim, S., Janzer, A., Becker, A., et al. (2010). Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis, 31, 512–520.

    Article  CAS  PubMed  Google Scholar 

  17. Reid, K. B., & Day, A. J. (1989). Structure-function relationships of the complement components. Immunology Today, 10, 177–180.

    Article  CAS  PubMed  Google Scholar 

  18. Norman, D. G., Barlow, P. N., Baron, M., Day, A. J., Sim, R. B., & Campbell, I. D. (1991). Three-dimensional structure of a complement control protein module in solution. Journal of Molecular Biology, 219, 717–725.

    Article  CAS  PubMed  Google Scholar 

  19. Gaboriaud, C., Rossi, V., Bally, I., Arlaud, G. J., & Fontecilla-Camps, J. C. (2000). Crystal structure of the catalytic domain of human complement c1s: A serine protease with a handle. EMBO Journal, 19, 1755–1765.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Moy, I., Todorovic, V., Dubash, A. D., et al. (2014). Estrogen-dependent sushi domain containing 3 regulates cytoskeleton organization and migration in breast cancer cells. Oncogene,. doi:10.1038/onc.2013.

    PubMed  Google Scholar 

  21. Mello-Grand, M., Singh, V., Ghimenti, C., et al. (2010). Gene expression profiling and prediction of response to hormonal neoadjuvant treatment with anastrozole in surgically resectable breast cancer. Breast Cancer Research and Treatment, 121, 399–411.

    Article  CAS  PubMed  Google Scholar 

  22. Watson, A. P., Evans, R. L., & Egland, K. A. (2013). Multiple functions of sushi domain containing 2 (SUSD2) in breast tumorigenesis. Molecular Cancer Research: MCR, 11, 74–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Cui, H., Kamino, H., Nakamura, Y., et al. (2010). Regulation of apoptosis by p53-inducible transmembrane protein containing sushi domain. Oncology Reports, 24, 1193–1200.

    CAS  PubMed  Google Scholar 

  24. Parris, T. Z., Danielsson, A., Nemes, S., et al. (2010). Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 16, 3860–3874.

    Article  CAS  Google Scholar 

  25. Hosford, S. R., & Miller, T. W. (2014). Clinical potential of novel therapeutic targets in breast cancer: CDK4/6, Src, JAK/STAT, PARP, HDAC, and PI3K/AKT/mTOR pathways. Journal of Pharmacogenomics and Personalized Medicine, 7, 203–215.

    CAS  Google Scholar 

  26. Yip, G. W. (2011). Breast cancer: Novel therapeutic targets. Recent Patents on Anticancer Drug Discovery, 6, 164–165.

    Article  CAS  Google Scholar 

  27. Hanstein, B., Djahansouzi, S., Dall, P., Beckmann, M. W., & Bender, H. G. (2004). Insights into the molecular biology of the estrogen receptor define novel therapeutic targets for breast cancer. European Journal of Endocrinology, 150, 243–255.

    Article  CAS  PubMed  Google Scholar 

  28. Hudis, C. A. (2007). Trastuzumab-mechanism of action and use in clinical practice. The New England Journal of Medicine, 357, 39–51.

    Article  CAS  PubMed  Google Scholar 

  29. Kantoff, P. W., Higano, C. S., Shore, N. D., et al. (2010). Sipuleucel-T immunotherapy for castration-resistant prostate cancer. New England Journal of Medicine, 363, 411–422.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li.

Additional information

Zhenghong Yu and Enze Jiang have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Jiang, E., Wang, X. et al. Sushi Domain-Containing Protein 3: A Potential Target for Breast Cancer. Cell Biochem Biophys 72, 321–324 (2015). https://doi.org/10.1007/s12013-014-0480-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0480-9

Keywords

Navigation