Log in

Triptonide, a Diterpenoid Displayed Anti-Inflammation, Antinociceptive, and Anti-Asthmatic Efficacy in Ovalbumin-Induced Mouse Model

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present study was intended to explore the valuable effects of triptonide on inflammation, asthmatic, and nociceptive. Triptonide possesses numerous beneficial effects extensively managed in the treatment of inflammation disease condition. Initially, triptonide showed anti-inflammation properties over lipopolysaccharide-induced RAW 264.7 cells. Hence, the present study was directed to explore the protecting efficacy of triptonide in ovalbumin (OVA)-induced asthma in mice. Asthma was induced intraperitoneally administration (200μL) in female BALB/c mice with suspension which has ovalbumin (100 μg/mL) and aluminum hydroxide (10 mg/mL). Triptonide (30 mg/kg) over OVA-induced experimental animals altered lung mass, nitric oxide, myeloperoxidase, immunoglobulin E status, interleukins (4, 5, and 13) inflammatory cytokines status, and histological modifications. Animals were also managed with the standard drug dexamethasone (50 mg/kg) followed by the asthma induction, which is also efficient over OVA-induced experimental animals. The nociception was provoked in male Swiss mice by various chemicals (acetic acid, capsaicin, and glutamate). The animals were administered with triptonide (5, 10, and 15 mg/kg) and separate standard drugs like diclofenac sodium (10 mg/kg) and morphine (5 mg/kg) over chemical-induced nociceptive animals. The present outcome evidently established that the triptonide considerably reduced the various chemical-induced nociception in mice (Fig. 7A, B, and C). Ultimately, the present work explored the evident powerful anti-inflammation, antinociceptive, and anti-asthma properties of a diterpenoid, triptonide experimental animal models. And it is recommended that triptonide is an excellent compound in the management of asthma and its related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

OVA :

Ovalbumin

TPN :

Triptonide

MTT :

3-(4, 5-Dimethylthiazol-2-y1)-2, 5-diphenyltetrazolium bromide

DMSO :

Dimethyl sulfoxide

DMEM :

Dulbecco’s modified Eagle’s medium

FBS :

Fetal bovine serum

LPS :

Lipopolysaccharides

MPO :

Myeloperoxidase

NO :

Nitric oxide

References

  1. Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D. W., Fasano, A., Miller, G. W., Miller, A. H., Mantovani, A., Weyand, C. M., Barzilai, N., Goronzy, J. J., Rando, T. A., Effros, R. B., Lucia, A., Kleinstreuer, N., & Slavich, G. M. (2019). Chronic inflammation in the etiology of disease across the life span. Nature Medicine, 25(12), 1822–1832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sorriento, D., & Iaccarino, G. (2019). Inflammation and cardiovascular diseases: The most recent findings. International Journal of Molecular Sciences, 20(16), 3879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Greten, F. R., & Grivennikov, S. I. (2019). Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity, 51(1), 27–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Papi, A., Brightling, C., Pedersen, S. E., & Reddel, H. K. (2018). Asthma. Lancet, 391(10122), 783–800. https://doi.org/10.1016/S0140-6736(17)33311-1

    Article  PubMed  Google Scholar 

  5. Nunes, C., Pereira, A. M., & Morais-Almeida, M. (2017). Asthma costs and social impact. Asthma Research and Practice, 3, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Burke, W., Fesinmeyer, M., Reed, K., Hampson, L., & Carlsten, C. (2003). Family history as a predictor of asthma risk. American Journal of Preventive Medicine, 24, 160–169.

    Article  PubMed  Google Scholar 

  7. Centers for Disease Control and Prevention (2013) Asthma facts—CDC’s national asthma control program grantees. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. 8. Dr Green. Asthma. Retrieved from http://www.drgreene.com/211252.html

  8. Suleyman, H., Albayrak, A., Bilici, M., Cadirci, E., & Halici, Z. (2010). Different mechanisms in formation and prevention of indomethacin-induced gastric ulcers. Inflammation, 33(4), 224–234.

    Article  CAS  PubMed  Google Scholar 

  9. Thompson, P. W., Tee, L., McBride, J., Quincey, D., & Liddiard, G. S. (2005). Long-term NSAID use in primary care: Changes over a decade and NICE risk factors for gastrointestinal adverse events. Rheumatology, 44(10), 1308–1310.

    Article  CAS  PubMed  Google Scholar 

  10. Jang, H. H., Cho, S. Y., Kim, M. J., Kim, J. B., Lee, S. H., Lee, M. Y., & Lee, Y. M. (2016). Anti-inflammatory effects of Salvia plebeia R Br extract in vitro and in ovalbumin-induced mouse model. Biological Research, 49, 41.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bloechliger, M., Reinau, D., Spoendlin, J., Chang, S. C., Kuhlbusch, K., Heaney, L. G., Jick, S. S., & Meier, C. R. (2018). Adverse events profile of oral corticosteroids among asthma patients in the UK: Cohort study with a nested case-control analysis. Respiratory Research, 19, 75.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Amaral-Machado, L., Oliveira, W. N., Moreira-Oliveira, S. S., Pereira, D. T., Alencar, E. N., Tsapis, N., & Egito, E. S. T. (2020). Use of natural products in asthma treatment. Evid Based Complement Alternat Med., 2020, 1021258.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shin, I. S., Lee, M. Y., Lim, H. S., Ha, H., Seo, C. S., Kim, J. C., et al. (2012). An extract of Crataegus pinnatifida fruit attenuates airway inflammation by modulation of matrix metalloproteinase-9 in ovalbumin induced asthma. PLoS ONE, 7(9), e45734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, S. S., Lv, Y., Xu, X. C., et al. (2019). Triptonide inhibits human nasopharyngeal carcinoma cell growth via disrupting Lnc-RNA THOR-IGF2BP1 signaling. Cancer Letters, 443, 13–24.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, M., Tan, S., Yu, D., et al. (2019). Triptonide inhibits lung cancer cell tumorigenicity by selectively attenuating the Shh-Gli1 signaling pathway. Toxicology and Applied Pharmacology, 365, 1–8.

    Article  CAS  PubMed  Google Scholar 

  16. **ang, S., Zhao, Z., Zhang, T., Zhang, B., Meng, M., Cao, Z., & Zhou, Q. (2020). Triptonide effectively suppresses gastric tumor growth and metastasis through inhibition of the oncogenic Notch1 and NF-κB signaling pathways. Toxicology and Applied Pharmacology, 388, 114870. https://doi.org/10.1016/j.taap.2019.114870

  17. Ling, Y. J., Ding, T. Y., Dong, F. Y., Gao, Y. J., & Jiang, B. C. (2020). Intravenous administration of triptonide attenuates CFA-induced pain hypersensitivity by inhibiting DRG AKT signaling pathway in mice. Journal of Pain Research, 13, 3195–3206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chang, Z., Qin, W., Zheng, H., et al. (2021). Triptonide is a reversible non-hormonal male contraceptive agent in mice and non-human primates. Nature Communications, 12, 1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dong, F., Yang, P., Wang, R., et al. (2019). Triptonide acts as a novel antiprostate cancer agent mainly through inhibition of mTOR signaling pathway. Prostate, 79(11), 1284–1293.

    Article  CAS  PubMed  Google Scholar 

  20. Dai, R., Niu, M., Wang, N., & Wang, Y. (2021). Syringin alleviates ovalbumin-induced lung inflammation in BALB/c mice asthma model via NF-κB signaling pathway. Environmental Toxicology, 36(3), 433–444. https://doi.org/10.1002/tox.23049

    Article  CAS  PubMed  Google Scholar 

  21. Gawade, S. P. (2012). Acetic acid induced painful endogenous infliction in writhing test on mice. Journal of Pharmacology and Pharmacotherapeutics, 3(4), 348.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Giorno, T. B. S., Ballard, Y. L. L., Cordeiro, M. S., Silva, B., Pinto, A. C., & Fernandes, P. D. (2015). Central and peripheral antinociceptive activity of 3-(2-oxopropyl)-3-hydroxy-2-oxindoles. Pharmacology Biochemistry and Behavior, 135, 13–19.

    Article  CAS  PubMed  Google Scholar 

  23. Liu, J., **ong, H., & Cheng, Y. (2013). Effects of taraxasterol on ovalbumin-induced allergic asthma in mice. Journal of Ethnopharmacology, 148, 787–793.

    Article  CAS  PubMed  Google Scholar 

  24. Murdoch, J. R., & Lloyd, C. M. (2010). Chronic inflammation and asthma. Mutation Research, 690(1–2), 24–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gauthier, M., Ray, A., & Wenzel, S. E. (2015). Evolving concepts of asthma. American Journal of Respiratory and Critical Care Medicine, 192(6), 660–668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Caubet, J. C., & Wang, J. (2011). Current understanding of egg allergy. Pediatric Clinics of North America, 58(2), 427–443.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wu, C., Zhao, W., Zhang, X., & Chen, X. (2015). Neocryptotanshinone inhibits lipopolysaccharide-induced inflammation in RAW264.7 macrophages by suppression of NF-κB and iNOS signaling pathways. Acta Pharmaceutica Sinica B, 5(4), 323–329.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fahy, J. V., & Dickey, B. F. (2010). Airway mucus function and dysfunction. New England Journal of Medicine, 363(23), 2233–2247.

    Article  CAS  PubMed  Google Scholar 

  29. Deepa, K., Ingawalea, M., Satish, K., Mandlik, B., & Snehal, S. (2020). Combination of sarsasapogenin and fluticasone attenuates ovalbumin-induced airway inflammation in a mouse asthma model. Immunopharmacology and Immunotoxicology, 3, 244–260.

    Google Scholar 

  30. Soodaeva, S., Klimanov, I., Kubysheva, N., Popova, N., & Batyrshin, I. (2020). The State of the Nitric oxide cycle in respiratory tract diseases. Oxidative Medicine and Cellular Longevity, 2020, 4859260.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Prasch, J., Bernhart, E., Reicher, H., Kollroser, M., Rechberger, G. N., Koyani, C. N., Trummer, C., Rech, L., Rainer, P. P., Hammer, A., Malle, E., & Sattler, W. (2020). Myeloperoxidase-derived 2-chlorohexadecanal is generated in mouse heart during endotoxemia and induces modification of distinct cardiomyocyte protein subsets in vitro. International Journal of Molecular Sciences, 21, 9235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, L., **npeng, H., Devanathadesikan, S. V., Aziz, I. I. A., & Ou, L. (2022). Tilianin alleviates airway inflammation in ovalbumin-induced allergic asthma in mice through the regulation of Th2 cytokines and TGF-b1/Smad markers. Arabian Journal of Chemistry, 15, 103961.

    Article  CAS  Google Scholar 

  33. Bao, K., & Lee, R. R. (2015). The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine, 75(1), 25–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim, D. I., Song, M. K., & Lee, K. (2019). Comparison of asthma phenotypes in OVA-induced mice challenged via inhaled and intranasal routes. BMC Pulmonary Medicine, 19, 241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gour, N., & Wills-Karp, M. (2015). IL-4 and IL-13 Signaling in allergic airway disease. Cytokine, 75(1), 68–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee, J. E., & Im, D. S. (2021). Suppressive effect of carnosol on ovalbumin-induced allergic asthma. Biomol Ther (Seoul)., 29(1), 58–63.

    Article  CAS  PubMed  Google Scholar 

  37. Doeing, D. C., & Solway, J. (2013). Airway smooth muscle in the pathophysiology and treatment of asthma. Journal of Applied Physiology (1985), 114(7), 834–43.

    Article  CAS  Google Scholar 

  38. Kudo, M., Ishigatsubo, Y., & Aoki, I. (2013). Pathology of asthma. Frontiers in Microbiology, 4, 263.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Begnami, A. F., Spindola, H. M., Ruiz, A. L. T. G., de Carvalho, J. E., Groppo, F. C., & Rehder, V. L. G. (2018). Antinociceptive and anti-edema properties of the ethyl acetate fraction obtained from extracts of Coriandrum sativum Linn Leaves. Biomedicine & Pharmacotherapy, 103, 1617–1622.

    Article  CAS  Google Scholar 

  40. Smart, T. G., & Paoletti, P. (2012). Synaptic neurotransmitter-gated receptors. Cold Spring Harbor Perspectives in Biology, 4(3), a009662.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fattori, V., Hohmann, M. S. N., Rossaneis, A. C., Pinho-Ribeiro, F. A., & Verri, W. A. (2016). Capsaicin: Current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules, 21(7), 844.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally.

Corresponding author

Correspondence to Hao Liu.

Ethics declarations

Ethics Approval

All work has been done under the guidelines of Institutional Ethics Committee.

Consent to Participate

All authors have their consent to participate.

Consent for Publication

All authors have their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Geng, Y., Wu, Q. et al. Triptonide, a Diterpenoid Displayed Anti-Inflammation, Antinociceptive, and Anti-Asthmatic Efficacy in Ovalbumin-Induced Mouse Model. Appl Biochem Biotechnol 195, 1736–1751 (2023). https://doi.org/10.1007/s12010-022-04167-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04167-1

Keywords

Navigation