Log in

Incorporation of High-Speed Shearing in the Fabrication of Whole Soybean Curd: Effects on Aggregation Behaviors and Microstructures

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

High-speed shearing (HSS) technology was used to mill the okara fibers in raw whole soybean flour (rWSF) suspension for fabrication of whole soybean curd (WSC). By measuring the medium diameter and analyzing the protein subunit composition of rWSF and heated whole soybean flour (hWSF), we found that HSS effectively micronized the insoluble fraction in suspension (especially the component cell layers of seed coat) but destroyed the structure of the native protein and caused the disappearance of specific protein band 7 in sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Further, we made WSC using HSS-treated hWSF suspension and analyzed its characteristics. The relative contents of α-helix, β-sheet, and β-turns all decreased after HSS, but the surface hydrophobicity showed an opposite trend. Additionally, the maximum emission wavelength blue- shifted after HSS. These results indicated that the secondary and tertiary structures of WSC were changed by HSS. Moreover, microstructural analysis based on a field emission scanning electron microscope (FESEM) and texture analyzer suggested that HSS led to the formation of a loose and less connected gel network and weakened the gel strength consequently. In summary, to separate and micronize okara individually and add them back to soymilk for WSC making was a considerable method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HSS:

High-speed shearing

WSF:

Whole soybean flour

rWSF:

Raw whole soybean flour

hWSF:

Heated whole soybean flour

rOF:

Raw okara–filtered

hOF:

Heated okara–filtered

WSC:

Whole soybean curd

OFC:

Okara-filtered curd

D 50 :

Medium diameter

S/V :

Surface-area-to-volume ratio

FTIR:

Fourier transform infrared spectroscopy

SDS-PAGE:

Sulfate polyacrylamide gel electrophoresis

Native-PAGE:

Native polyacrylamide gel electrophoresis

H 0 :

Surface hydrophobicity

FESEM:

Field emission scanning electron microscope

cWHC:

Centrifugation water holding capacity

w/v:

Weight/volume

GDL:

Glucono-δ-lactone

References

  • Achouri, A., Boye, J. I., Yaylayan, V. A., & Yeboah, F. K. (2005). Functional properties of glycated soy 11S glycinin. Journal of Food Science, 70(4), C269–C274. https://doi.org/10.1111/j.1365-2621.2005.tb07172.x.

    Article  CAS  Google Scholar 

  • Andrews, J. M., & Roberts, C. J. (2007). A Lumry-Eyring nucleated polymerization model of protein aggregation kinetics: 1. Aggregation with pre-equilibrated unfolding. Journal of Physical Chemistry B. https://doi.org/10.1021/jp070212j.

  • Bu, G., Zhu, T., Chen, F., Zhang, N., Liu, K., Zhang, L., & Yang, H. (2015). Effects of saccharide on the structure and antigenicity of β-conglycinin in soybean protein isolate by glycation. European Food Research and Technology, 240(2), 285–293. https://doi.org/10.1007/s00217-014-2326-5.

    Article  CAS  Google Scholar 

  • Chen, J., Wu, S. S., Liang, R. H., Liu, W., Liu, C. M., & Shuai, X. X. (2014). The effect of high speed shearing on disaggregation and degradation of pectin from cree** fig seeds. Food Chemistry. https://doi.org/10.1016/j.foodchem.2014.05.096.

  • Dhaubhadel, S., Kuflu, K., Romero, M. C., & Gijzen, M. (2005). A soybean seed protein with carboxylate-binding activity. Journal of Experimental Botany. https://doi.org/10.1093/jxb/eri226.

  • Dhaubhadel, S., Gijzen, M., Moy, P., & Farhangkhoee, M. (2007). Transcriptome analysis reveals a critical role of CHS7 and CHS8 genes for isoflavonoid synthesis in soybean seeds. Plant Physiology. https://doi.org/10.1104/pp.106.086306.

  • Gijzen, M., Kuflu, K., Qutob, D., & Chernys, J. T. (2001). A class I chitinase from soybean seed coat. Journal of Experimental Botany. https://doi.org/10.1093/jexbot/52.365.2283.

  • GMIA. (2013). Standard testing method for edible gelatin. Official Procedure of the Gelatin Manufacturers Institute of America, Inc. http://www.gelatin-gmia.com/

  • Guo, S. T., & Ono, T. (2005). The role of composition and content of protein particles in soymilk on tofu curding by glucono-δ-lactone or calcium sulfate. Journal of Food Science. https://doi.org/10.1111/j.1365-2621.2005.tb07170.x.

  • Guo, J., Yang, X. Q., He, X. T., Wu, N. N., Wang, J. M., Gu, W., et al. (2012). Limited aggregation behavior of b-conglycinin and its terminating effect on glycinin aggregation during heating at pH 7.0. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf300409y.

  • Hua, X., Xu, S. A., Wang, M. M., Chen, Y., Yang, H., & Yang, R. J. (2017). Effects of high-speed homogenization and high-pressure homogenization on structure of tomato residue fibers. Food Chemistry. https://doi.org/10.1016/j.foodchem.2017.04.003.

  • Huang, X., Li, C., Yang, F., **e, L., Xu, X., Zhou, Y., & Pan, S. (2010). Interactions and gel strength of mixed myofibrillar with soy protein, 7S globulin and enzyme hydrolyzed soy proteins. European Food Research and Technology, 231(5), 751–762. https://doi.org/10.1007/s00217-010-1329-0.

    Article  CAS  Google Scholar 

  • Ingrassia, R., Palazolo, G. G., Risso, P. H., & Wagner, J. R. (2017). Glycosylation, denaturation and aggregation of soy protein in defatted soy flakes flour: Influence of thermal and homogenization treatments. International Journal of Food Properties. https://doi.org/10.1080/10942912.2016.1238388.

  • Joo, S. I., Kim, J. E., & Lee, S. P. (2011). Physicochemical properties of whole soybean curd prepared by microbial transglutaminase. Food Science and Biotechnology, 20(2), 437–444. https://doi.org/10.1007/s10068-011-0061-2.

    Article  CAS  Google Scholar 

  • Kim, J. Y., Kim, J. H., Kim, J. K., & Moon, K. D. (2000). Quality attributes of whole soybean flour tofu affected by coagulant and their concentration. Korean Journal of Food Science and Technology, 32, 402–409.

    Google Scholar 

  • Kumar, V., Rani, A., Hussain, L., Jha, P., Pal, V., Petwal, V. C., & Dwivedi, J. (2017). Impact of electron beam on storage protein subunits, in vitro protein digestibility and trypsin inhibitor content in soybean seeds. Food and Bioprocess Technology, 10(2), 407–412. https://doi.org/10.1007/s11947-016-1823-x.

    Article  CAS  Google Scholar 

  • Lee, H. J., Shin, H. C., Lee, Y. S., Kim, J. Y., Moon, Y. H., Park, K. H., & Moon, J. H. (2009). Comparison of quality characteristics of soybean curd and whole soybean curd. Korean Journal of Food Science and Technology, 41(2), 117–121.

    Google Scholar 

  • Lee, K. H., Jeong, Y. H., Lee, B., Kang, W., & Choi, Y. S. (2011). Hypolipidaemic effects of dietary whole soybean curd (jeondubu) in rats. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.4460.

  • Li, J. L., Qiao, Z. H., Tatsumi, E., Saito, M., Cheng, Y. Q., & Yin, L. J. (2013). A novel approach to improving the quality of bittern-solidified tofu by W/O controlled-release coagulant. 2: Using the improved coagulant in tofu processing and product evaluation. Food and Bioprocess Technology, 6(7), 1801–1808. https://doi.org/10.1007/s11947-012-0849-y.

    Article  CAS  Google Scholar 

  • Li, X., Dong, D., Hua, Y., Chen, Y., Kong, X., & Zhang, C. (2014). Soybean whey protein/chitosan complex behavior and selective recovery of kunitz trypsin inhibitor. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf501904g.

  • Li, B., Bao, Z. J., Xu, W., & Chi, Y. J. (2015). Influence of glycation extent on the physicochemical and gelling properties of soybean β-conglycinin. European Food Research and Technology, 240(2), 399–411. https://doi.org/10.1007/s00217-014-2339-0.

    Article  CAS  Google Scholar 

  • Li, R., Wang, X. B., Liu, J. N., Cui, Q., Wang, X. D., Chen, S., & Jiang, L. Z. (2019). Relationship between molecular flexibility and emulsifying properties of soy protein isolate-glucose conjugates. Journal of Agriculture and Food Chemistry. https://doi.org/10.1021/acs.jafc.8b06713.

  • Liu, H. H., & Kuo, M. I. (2016). Ultra high pressure homogenization effect on the proteins in soy flour. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2015.08.018.

  • Liu, H. H., Chien, J. T., & Kuo, M. I. (2013). Ultra high pressure homogenized soy flour for tofu making. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2013.01.005.

  • Nakamura, Y., Kurosumi, A., & Mtui, G. (2008). Manufacturing method of okara-containing soybean curd using steam explosion. Journal of Food Technology, 6(3), 135–138.

    CAS  Google Scholar 

  • Natarajan, S. S., Xu, C., Bae, H., Caperna, T. J., & Garrett, W. M. (2006). Characterization of storage proteins in wild (Glycine soja) and cultivated (Glycine Tax) soybean seeds using proteomic analysis. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf052954k.

  • Noh, E. J., Park, S. Y., Pak, J. I., Hong, S. T., & Yun, S. E. (2005). Coagulation of soymilk and quality of tofu as affected by freeze treatment of soybeans. Food Chemistry. https://doi.org/10.1016/j.foodchem.2004.06.050.

  • Peng, L. P., Xu, Y. T., Li, X. T., & Tang, C. H. (2020). Improving the emulsification of soy β-conglycinin by alcohol-induced aggregation. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2019.105307.

  • Qin, X. S., Chen, S. S., Li, X. J., Luo, S. Z., Zhong, X. Y., Jiang, S. T., Zhao, Y. Y., & Zheng, Z. (2017). Gelation properties of transglutaminase-induced soy protein isolate and wheat gluten mixture with ultrahigh pressure pretreatment. Food and Bioprocess Technology, 10(5), 866–874. https://doi.org/10.1007/s11947-017-1864-9.

    Article  CAS  Google Scholar 

  • Qutob, D., Ma, F., Peterson, C. A., Bernards, M. A., & Gijzen, M. (2008). Structural and permeability properties of the soybean seed coat. Botany. https://doi.org/10.1139/B08-002.

  • Ren, C. G., Tang, L., Zhang, M., & Guo, S. T. (2009). Structural characterization of heat-induced protein particles in soy milk. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf803321n.

  • Rong, H. C., **, R. H., Min, T., Lan, Z. T., & Chu, H. H. (2011). Differences in degradation kinetics for sonolysis, microfluidization and shearing treatments of chitosan. Polymer International. https://doi.org/10.1002/pi.3055.

  • Salvador, P., Toldrà, M., Saguer, E., Carretero, C., & Parés, D. (2009). Microstructure-function relationships of heat-induced gels of porcine haemoglobin. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2008.12.003.

  • Shen, Y. U., & Kuo, M. I. (2017). Effects of different carrageenan types on the rheological and water-holding properties of tofu. LWT-Food Science and Technology. https://doi.org/10.1016/j.lwt.2016.12.038.

  • Torres, B. G., Vieira, L., Barbosa, G. F., Barbosa, R. M., & Vieira, R. D. (2013). Structural changes in soybean seed coat due to harvest time and storage. Journal of Food Agriculture and Environment, 1111, 625–628.

    Google Scholar 

  • Ullah, I., Hu, Y., You, J., Yin, T., **on, S. B., Din, Z., Huang, Q. L., & Liu, R. (2019). Influence of okara dietary fiber with varying particle sizes on gelling properties, water state and microstructure of tofu gel. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2018.11.006.

  • Vetri, V., & Militello, V. (2005). Thermal induced conformational changes involved in the aggregation pathways of beta-lactoglobulin. Biophysical Chemistry. https://doi.org/10.1016/j.bpc.2004.07.042.

  • Wang, Z. J., Li, Y., Jiang, L. Z., Qi, B. K., & Zhou, L. Y. (2014). Relationship between secondary structure and surface hydrophobicity of soybean protein isolate subjected to heat treatment. Journal of Chemistry. https://doi.org/10.1155/2014/475389.

  • Wang, Y., Yu, K., Xu, Y., Guo, L., & Du, X. F. (2015). Physicochemical properties of soya bean protein gel prepared by microbial transglutaminase in the presence of okara. International Journal of Food Science and Technology. https://doi.org/10.1111/ijfs.12906.

  • Wang, B. Z., Liu, F. R., Luo, S. Z., Li, P. J., Mu, D. D., Zhao, Y. Y., et al. (2018). Effects of high hydrostatic pressure on the properties of heat-induced wheat gluten gels. Food and Bioprocess Technology, 12(2), 220–227. https://doi.org/10.1007/s11947-018-2205-3.

    Article  CAS  Google Scholar 

  • Wang, C. Z., Li, J. Y., Zhou, S. Y., et al. (2019a). Application of transglutaminase for quality improvement of whole soybean curd. Journal of Food Science and Technology, 56(1), 233–244. https://doi.org/10.1007/s13197-018-3480-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C. Z., Li, L., Sun, X., Qin, W., Wu, D. T., Hu, B., et al. (2019b). High-speed shearing of soybean flour suspension disintegrates the component cell layers and modifies the hydration properties of okara fibers. LWT-Food Science and Technology. https://doi.org/10.1016/j.lwt.2019.108505.

  • Wei, F. B., Ye, F. Y., Li, S., Wang, L., Li, J. F., & Zhao, G. H. (2018). Layer-by-layer coating of chitosan/pectin effectively improves the hydration capacity, water suspendability and tofu gel compatibility of okara powder. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2017.10.024.

  • Wilkinson, C., Dijksterhuis, G., & Minekus, M. (2000). From food structure to texture. Trends in Food Science and Technology. https://doi.org/10.1016/S0924-2244(01)00033-4.

  • Yasir, S. B. M., Sutton, K. H., Newberry, M. P., Andrews, N. R., & Gerrard, J. A. (2007). The impact of transglutaminase on soy proteins and tofu texture. Food Chemistry. https://doi.org/10.1016/j.foodchem.2007.02.026.

  • Zhang, Z. H., & Hua, Y. F. (2007). Urea-modified soy globulin proteins (7S and 11S): effect of wettability and secondary structure on adhesion. Journal of the American Oil Chemists Society, 84(9), 853–857. https://doi.org/10.1007/s11746-007-1108-7.

    Article  CAS  Google Scholar 

  • Zhang, Q., Wang, C., Li, B., Li, L., Lin, D. R., Chen, H., et al. (2018). Research progress in tofu processing: From raw materials to processing conditions. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2016.1263823.

  • Zhang, M. K., Wang, P., Zou, M., Yang, R. Q., Tian, M. Q., & Gu, Z. X. (2019a). Microbial transglutaminase-modified protein network and its importance in enhancing the quality of high-fiber tofu with okara. Food Chemistry. https://doi.org/10.1016/j.foodchem.2019.03.038.

  • Zhang, Q., Zhou, S. Y., Chen, J., Qin, W., Liu, J., Yang, W. Y., & Zhang, L. H. (2019b). Fabrication of whole soybean curd using three soymilk preparation techniques. LWT-Food science and technology. https://doi.org/10.1016/j.lwt.2019.01.042.

  • Zhou, Y., Wang, W., Ma, F., Li, P. J., & Chen, C. G. (2018). High-pressure pretreatment to improve the water retention of sodium-reduced frozen chicken breast gels with two organic anion types of potassium salts. Food and Bioprocess Technology, 11(3), 526–535. https://doi.org/10.1007/s11947-017-2023-z.

    Article  CAS  Google Scholar 

  • Zhu, Q. M., Wu, F. F., Saito, M., Tatsumi, T., & Yin, L. (2016). Effect of magnesium salt concentration in water-in-oil emulsions on the physical properties and microstructure of tofu. Food Chemistry. https://doi.org/10.1016/j.foodchem.2016.01.065.

Download references

Funding

This work was funded by the Department of Science and Technology of Sichuan Province: Key research and development projects (2019YFN0107). This work also received support from China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Li, L., Zhang, Q. et al. Incorporation of High-Speed Shearing in the Fabrication of Whole Soybean Curd: Effects on Aggregation Behaviors and Microstructures. Food Bioprocess Technol 13, 611–624 (2020). https://doi.org/10.1007/s11947-020-02417-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-020-02417-w

Keywords

Navigation