Log in

Therapeutic Monoclonal Antibodies for Metabolic Disorders: Major Advancements and Future Perspectives

  • Review
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Globally, the prevalence of metabolic disorders is rising. Elevated low-density lipoprotein (LDL) cholesterol is a hallmark of familial hypercholesterolemia, one of the most prevalent hereditary metabolic disorders and another one is Diabetes mellitus (DM) that is more common globally, characterised by hyperglycemia with low insulin-directed glucose by target cells. It is still known that low-density lipoprotein cholesterol (LDL-C) increases the risk of cardiovascular disease (CVD). LDL-C levels are thought to be the main therapeutic objectives.

Recent Findings

The primary therapy for individuals with elevated cholesterol levels is the use of statins and other lipid lowering drugs like ezetimibe for hypercholesterolemia. Even after taking statin medication to the maximum extent possible, some individuals still have a sizable residual cardiovascular risk. To overcome this proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors-monoclonal antibodies (mAbs) are a novel class of systemic macromolecules that have enhanced LDL-C-lowering efficacy. Along with this other inhibitor are used like Angiopoeitin like 3 inhibitors. Research on both humans and animals has shown that anti-CD3 antibodies can correct autoimmune disorders like diabetes mellitus.

Summary

Individuals diagnosed with familial hypercholesterolemia (FH) may need additional treatment options beyond statins, especially when facing challenges such as statin tolerance or the inability of even the highest statin doses to reach the desired target cholesterol level. Here is the summary of PCSK9, ANGPTL-3 and CD3 inhibitors and their detailed information. In this review we discuss the details of PCSK9, ANGPTL-3 and CD3 inhibitors and the current therapeutic interventions of using the monoclonal antibodies in case of the metabolic disorder. We further present the present studies and the future prospective of the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Clemente-Suárez VJ, Mielgo-Ayuso J, Martín-Rodríguez A, Ramos-Campo DJ, Redondo-Flórez L, Tornero-Aguilera JF. The burden of carbohydrates in health and disease. Nutrients. 2022;14(18):3809.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Clarke JTR. A clinical guide to inherited metabolic diseases. Cambridge University Press; 2005.

    Book  Google Scholar 

  3. Saudubray JM, Sedel F, Walter JH. Clinical approach to treatable inborn metabolic diseases: an introduction. Journal of inherited metabolic disease 2006;29(2–3):261–274.

  4. Agana M, Frueh J, Kamboj M, Patel DR, Kanungo S. Common metabolic disorder (inborn errors of metabolism) concerns in primary care practice. Ann Transl Med. 2018;6(24):469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Standl E, Khunti K, Hansen TB, Schnell O. The global epidemics of diabetes in the 21st century: Current situation and perspectives. Eur J Prev Cardiol. 2019;26(2_suppl):7–14.

    Article  PubMed  Google Scholar 

  6. Akkol EK, Aschner M. Chapter 1 - An overview on metabolic disorders and current therapy. In: Khan H, Akkol EK, Daglia M, editors. The role of phytonutrients in metabolic disorders. Academic Press; 2022. pp. 3–33.

  7. Roep BO, Thomaidou S, van Tienhoven R, Zaldumbide A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat Rev Endocrinol. 2021;17(3):150–61.

    Article  CAS  PubMed  Google Scholar 

  8. Sprangers B, Van der Schueren B, Gillard P, Mathieu C. Otelixizumab in the treatment of type 1 diabetes mellitus. Immunotherapy. 2011;3(11):1303–16.

    Article  CAS  PubMed  Google Scholar 

  9. Goyal R, Singhal M, Jialal I: Type 2 Diabetes. In: StatPearls. Treasure island (FL) ineligible companies. Disclosure: Mayank Singhal declares no relevant financial relationships with ineligible companies. Disclosure: Ishwarlal Jialal declares no relevant financial relationships  with ineligible companies. StatPearls Publishing Copyright ©, StatPearls Publishing LLC. 2024.

  10. Tsalamandris S, Antonopoulos AS, Oikonomou E, et al. The role of inflammation in diabetes: current concepts and future perspectives. Eur Cardiol Rev. 2019;14(1):50.

    Article  Google Scholar 

  11. Benito-Vicente A, Uribe KB, Jebari S, Galicia-Garcia U, Ostolaza H, Martin C. Familial hypercholesterolemia: the most frequent cholesterol metabolism disorder caused disease. Int J Mol Sci. 2018;19(11):3426.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vallejo-Vaz AJ, Akram A, Seshasai SRK, et al. Pooling and expanding registries of familial hypercholesterolaemia to assess gaps in care and improve disease management and outcomes: rationale and design of the global EAS familial hypercholesterolaemia studies collaboration. Atheroscler Suppl. 2016;22:1–32.

    Article  PubMed  Google Scholar 

  13. Rani V, Deep G, Singh RK, Palle K, Yadav UCS. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 2016;148:183–93.

    Article  CAS  PubMed  Google Scholar 

  14. **e L, Li X. Editorial: roles and mechanisms of adipokines in metabolic diseases. Front Endocrinol. 2023;14:1303966.

  15. Fahed G, Aoun L, Bou Zerdan M, et al. Metabolic syndrome: updates on pathophysiology and management in 2021. Int J Mol Sci. 2022;23(2):786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Haas JT, Biddinger SB. Dissecting the role of insulin resistance in the metabolic syndrome. Curr Opin Lipidol. 2009;20(3):206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garg A, Fazio S, Duell PB, et al. Molecular characterization of familial hypercholesterolemia in a North American cohort. J Endocr Soc. 2020;4(1):bvz015.

    Article  PubMed  Google Scholar 

  18. Seidah NG, Abifadel M, Prost S, Boileau C, Prat A. The proprotein convertases in hypercholesterolemia and cardiovascular diseases: emphasis on proprotein convertase subtilisin/kexin 9. Pharmacol Rev. 2017;69(1):33–52.

    Article  CAS  PubMed  Google Scholar 

  19. Benjannet S, Rhainds D, Essalmani R, et al. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J Biol Chem. 2004;279(47):48865–75.

    Article  CAS  PubMed  Google Scholar 

  20. Ahamad S, Bhat SA. Recent update on the development of PCSK9 inhibitors for hypercholesterolemia treatment. J Med Chem. 2022;65(23):15513–39.

    Article  CAS  PubMed  Google Scholar 

  21. Hampton EN, Knuth MW, Li J, Harris JL, Lesley SA, Spraggon G. The self-inhibited structure of full-length PCSK9 at 1.9 Å reveals structural homology with resistin within the C-terminal domain. Proc Natl Acad Sci. 2007;104(37):14604–9.

  22. Norata GD, Tibolla G, Catapano AL. PCSK9 inhibition for the treatment of hypercholesterolemia: promises and emerging challenges. Vascul Pharmacol. 2014;62(2):103–11.

    Article  CAS  PubMed  Google Scholar 

  23. Melendez QM, Krishnaji ST, Wooten CJ, Lopez D. Hypercholesterolemia: the role of PCSK9. Arch Biochem Biophys. 2017;625:39–53.

    Article  PubMed  Google Scholar 

  24. Qian Y-W, Schmidt RJ, Zhang Y, et al. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J Lipid Res. 2007;48(7):1488–98.

    Article  CAS  PubMed  Google Scholar 

  25. Steinberg D, Witztum JL. Inhibition of PCSK9: a powerful weapon for achieving ideal LDL cholesterol levels. Proc Natl Acad Sci. 2009;106(24):9546-9547.

  26. Schlüter K-D, Wolf A, Schreckenberg R. Coming back to physiology: extra hepatic functions of proprotein convertase subtilisin/kexin type 9. Front Physiol. 2020;11:598649.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stein EA, Honarpour N, Wasserman SM, Xu F, Scott R, Raal FJ. Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation. 2013;128(19):2113–20.

    Article  CAS  PubMed  Google Scholar 

  28. Ference BA, Robinson JG, Brook RD, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med. 2016;375(22):2144–53.

    Article  CAS  PubMed  Google Scholar 

  29. Kersten S. ANGPTL3 as therapeutic target. Curr Opin Lipidol. 2021;32(6):335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Surma S, Romańczyk M, Filipiak KJ. Angiopoietin-like proteins inhibitors: new horizons in the treatment of atherogenic dyslipidemia and familial hypercholesterolemia. Cardiol J. 2023;30(1):131–42.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Krzemińska J, Młynarska E, Radzioch E, Wronka M, Rysz J, Franczyk B. Management of familial hypercholesterolemia with special emphasis on evinacumab. Biomedicines. 2022;10(12):3273.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Akoumianakis I, Zvintzou E, Kypreos K, Filippatos TD. ANGPTL3 and apolipoprotein C-III as novel lipid-lowering targets. Curr Atheroscler Rep. 2021;23:1–11.

    Article  Google Scholar 

  33. Kersten S. Angiopoietin-like 3 in lipoprotein metabolism. Nat Rev Endocrinol. 2017;13(12):731–9.

    Article  CAS  PubMed  Google Scholar 

  34. Raschi E, Casula M, Cicero AFG, Corsini A, Borghi C, Catapano A. Beyond statins: new pharmacological targets to decrease LDL-cholesterol and cardiovascular events. Pharmacol Ther. 2023;250:108507.

    Article  CAS  PubMed  Google Scholar 

  35. Stitziel NO, Khera AV, Wang X, et al. ANGPTL3 deficiency and protection against coronary artery disease. J Am Coll Cardiol. 2017;69(16):2054–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kosmas CE, Bousvarou MD, Sourlas A, et al. Angiopoietin-like protein 3 (ANGPTL3) inhibitors in the management of refractory hypercholesterolemia. Clin Pharmacol : Adv Appl. 2022;14:49–59.

  37. Packard CJ, Boren J, Taskinen M-R. Causes and consequences of hypertriglyceridemia. Front Endocrinol. 2020;11:252.

    Article  Google Scholar 

  38. Lang W, Frishman WH. Angiopoietin-like 3 protein inhibition: a new frontier in lipid-lowering treatment. Cardiol Rev. 2019;27(4):211–7.

    Article  PubMed  Google Scholar 

  39. Deng H, Niu Z, Zhang Z, et al. Back on the scene: advances and challenges in CD3-related drugs in tumor therapy. Drug Discovery Today. 2022;27(8):2199–208.

    Article  CAS  PubMed  Google Scholar 

  40. Sigalov A, Aivazian D, Stern L. Homooligomerization of the cytoplasmic domain of the T cell receptor ζ chain and of other proteins containing the immunoreceptor tyrosine-based activation motif. Biochemistry. 2004;43(7):2049–61.

    Article  CAS  PubMed  Google Scholar 

  41. Atkinson MA, Roep BO, Posgai A, Wheeler DCS, Peakman M. The challenge of modulating β-cell autoimmunity in type 1 diabetes. Lancet Diabetes Endocrinol. 2019;7(1):52–64.

    Article  CAS  PubMed  Google Scholar 

  42. Ashraf MT, Ahmed Rizvi SH, Kashif MAB, Shakeel Khan MK, Ahmed SH, Asghar MS. Efficacy of anti-CD3 monoclonal antibodies in delaying the progression of recent-onset type 1 diabetes mellitus: a systematic review, meta-analyses and meta-regression. Diabetes Obes Metab. 2023;25(11):3377–89.

    Article  CAS  PubMed  Google Scholar 

  43. Jung ST, Kang TH, Kelton W, Georgiou G. Bypassing glycosylation: engineering aglycosylated full-length IgG antibodies for human therapy. Curr Opin Biotechnol. 2011;22(6):858–67.

    Article  CAS  PubMed  Google Scholar 

  44. Maurice Morillon Y, Martin A, Gojanovich G, Wang B, Tisch R. Reestablishing T cell tolerance by antibody-based therapy in type 1 diabetes. Arch Immunol Ther Exp. 2015;63:239–50.

    Article  CAS  Google Scholar 

  45. Manniello M, Pisano M. Alirocumab (Praluent): first in the new class of PCSK9 inhibitors. Pharm Ther. 2016;41(1):28.

    Google Scholar 

  46. Parham JS, Goldberg AC. Review of recent clinical trials and their impact on the treatment of hypercholesterolemia. Prog Cardiovasc Dis. 2022;75:90–96.

  47. Dybiec J, Baran W, Dąbek B, et al. Advances in treatment of dyslipidemia. Int J Mol Sci. 2023;24(17):13288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bergeron N, Phan BAP, Ding Y, Fong A, Krauss RM. Proprotein convertase subtilisin/kexin type 9 inhibition: a new therapeutic mechanism for reducing cardiovascular disease risk. Circulation. 2015;132(17):1648–66.

    Article  CAS  PubMed  Google Scholar 

  49. Hummelgaard S, Vilstrup JP, Gustafsen C, Glerup S, Weyer K. Targeting PCSK9 to tackle cardiovascular disease. Pharmacol Ther. 2023;249:108480.

  50. Sabatine MS. PCSK9 inhibitors: clinical evidence and implementation. Nat Rev Cardiol. 2019;16(3):155–65.

    Article  CAS  PubMed  Google Scholar 

  51. Robinson JG, Farnier M, Krempf M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1489–99.

    Article  CAS  PubMed  Google Scholar 

  52. Santos RD, Wiegman A, Caprio S, et al. Alirocumab in pediatric patients With heterozygous familial hypercholesterolemia: a randomized clinical trial. JAMA pediatr. 2024;178(3):283–293.

  53. Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–82.

    Article  CAS  PubMed  Google Scholar 

  54. Okere AN, Serra C. Evaluation of the potential role of alirocumab in the management of hypercholesterolemia in patients with high-risk cardiovascular disease. Pharmacother: J Human Pharmacol Drug Ther. 2015;35(8):771–9.

    Article  CAS  Google Scholar 

  55. Zhang X-L, Zhu Q-Q, Zhu L, et al. Safety and efficacy of anti-PCSK9 antibodies: a meta-analysis of 25 randomized, controlled trials. BMC Med. 2015;13:1–19.

    Article  Google Scholar 

  56. Sindi AAA. Genetics, safety, cost-effectiveness, and accessibility of injectable lipid-lowering agents: a narrative review. J Lipids 2023;2023:2025490.

  57. Manso T, Kushwaha A, Abdollahi N, Duroux P, Giudicelli V, Kossida S. Mechanisms of action of monoclonal antibodies in oncology integrated in IMGT/mAb-DB. Front Immunol. 2023;14:1129323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Blom DJ, Harada-Shiba M, Rubba P, et al. Efficacy and safety of alirocumab in adults with homozygous familial hypercholesterolemia: the ODYSSEY HoFH trial. J Am Coll Cardiol. 2020;76(2):131–42.

    Article  CAS  PubMed  Google Scholar 

  59. Singh SK, Mahler H-C, Hartman C, Stark CA. Are injection site reactions in monoclonal antibody therapies caused by polysorbate excipient degradants? J Pharm Sci. 2018;107(11):2735–41.

    Article  CAS  PubMed  Google Scholar 

  60. Sinnaeve PR, Schwartz GG, Wojdyla DM, et al. Effect of alirocumab on cardiovascular outcomes after acute coronary syndromes according to age: an ODYSSEY OUTCOMES trial analysis. Eur Heart J. 2020;41(24):2248–58.

    Article  CAS  PubMed  Google Scholar 

  61. Jukema JW, Szarek M, Zijlstra LE, et al. Alirocumab in patients with polyvascular disease and recent acute coronary syndrome: ODYSSEY OUTCOMES trial. J Am Coll Cardiol. 2019;74(9):1167–76.

    Article  CAS  PubMed  Google Scholar 

  62. Pérez de Isla L, Díaz-Díaz JL, Romero MJ, et al. Alirocumab and coronary atherosclerosis in asymptomatic patients with familial hypercholesterolemia: the ARCHITECT study. Circulation. 2023;147(19):1436–43.

    Article  PubMed  PubMed Central  Google Scholar 

  63. FDA approves add-on therapy for patients with genetic form of severely high cholesterol. In: States News Service; 2021.

  64. Chaudhary R, Garg J, Shah N, Sumner A. PCSK9 inhibitors: a new era of lipid lowering therapy. World J Cardiol. 2017;9(2):76.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wadhera RK, Steen DL, Khan I, Giugliano RP, Foody JM. A review of low-density lipoprotein cholesterol, treatment strategies, and its impact on cardiovascular disease morbidity and mortality. J Clin Lipidol. 2016;10(3):472–89.

    Article  PubMed  Google Scholar 

  66. Iannuzzo G, Buonaiuto A, Calcaterra I, et al. Association between causative mutations and response to PCSK9 inhibitor therapy in subjects with familial hypercholesterolemia: a single center real-world study. Nutr Metab Cardiovasc Dis. 2022;32(3):684–91.

    Article  CAS  PubMed  Google Scholar 

  67. Wallemacq C. Evolocumab (Repatha®): a human monoclonal antibody against PCSK9 protein as potent cholesterol-lowering therapy. Rev Med Liege. 2017;72(11):505–12.

    CAS  PubMed  Google Scholar 

  68. Kasichayanula S, Grover A, Emery MG, et al. Clinical pharmacokinetics and pharmacodynamics of evolocumab, a PCSK9 inhibitor. Clin Pharmacokinet. 2018;57:769–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Luthra G, Shahbaz M, Almatooq H, et al. Exploring the efficacy of alirocumab and evolocumab in reducing low-density lipoprotein (LDL) cholesterol levels in patients with familial hypercholesterolemia: a systematic review. Cureus. 2022;14(9):e28930.

  70. Raal FJ, Stein EA, Dufour R, et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. The Lancet. 2015;385(9965):331–40.

    Article  CAS  Google Scholar 

  71. Pirillo A, Catapano AL, Norata GD. Monoclonal antibodies in the management of familial hypercholesterolemia: focus on PCSK9 and ANGPTL3 inhibitors. Curr Atheroscler Rep. 2021;23:1–8.

    Article  Google Scholar 

  72. AlHajri L, AlHadhrami A, AlMheiri S, AlMutawa Y, AlHashimi Z. The efficacy of evolocumab in the management of hyperlipidemia: a systematic review. Ther Adv Cardiovasc Dis. 2017;11(5–6):155–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. New Medical Devices. P & T : a peer-reviewed journal for formulary management. 2015;40(10):622–697.

  74. Deedwania P, Murphy SA, Scheen A, et al. Efficacy and safety of PCSK9 inhibition with evolocumab in reducing cardiovascular events in patients with metabolic syndrome receiving statin therapy: secondary analysis from the FOURIER randomized clinical trial. JAMA Cardiol. 2021;6(2):139–47.

    Article  PubMed  Google Scholar 

  75. Gencer B, Mach F, Murphy SA, et al. Efficacy of evolocumab on cardiovascular outcomes in patients with recent myocardial infarction: a prespecified secondary analysis from the FOURIER trial. JAMA Cardiol. 2020;5(8):952–7.

    Article  PubMed  Google Scholar 

  76. Sabatine MS, Leiter LA, Wiviott SD, et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5(12):941–50.

    Article  CAS  PubMed  Google Scholar 

  77. Sosnowska B, Adach W, Surma S, Rosenson RS, Banach M. Evinacumab, an ANGPTL3 Inhibitor, in the treatment of dyslipidemia. J Clin Med. 2022;12(1):168.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Reeskamp LF, Millar JS, Wu L, et al. ANGPTL3 inhibition with evinacumab results in faster clearance of IDL and LDL apoB in patients with homozygous familial hypercholesterolemia—brief report. Arterioscler Thromb Vasc Biol. 2021;41(5):1753–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Warden BA, Duell PB. Evinacumab for treatment of familial hypercholesterolemia. Expert Rev Cardiovasc Ther. 2021;19(8):739–51.

    Article  CAS  PubMed  Google Scholar 

  80. Mohamed F, Mansfield B, Raal FJ. Targeting PCSK9 and beyond for the management of low-density lipoprotein cholesterol. J Clin Med. 2023;12(15):5082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kaplon H, Chenoweth A, Crescioli S, Reichert JM. Antibodies to watch in 2022. MAbs. 2022;14(1):2014296.

  82. Wiegman A, Greber-Platzer S, Ali S, et al. Evinacumab for pediatric patients with homozygous familial hypercholesterolemia. Circulation. 2024;149(5):343–53.

    Article  CAS  PubMed  Google Scholar 

  83. Khoury E, Croteau L, Lauzière A, Gaudet D. Lessons learned from the evinacumab trials in the treatment of homozygous familial hypercholesterolemia. Fut Cardiol. 2022;18(6):507–18.

    Article  CAS  Google Scholar 

  84. Raal FJ, Rosenson RS, Reeskamp LF, et al. The long-term efficacy and safety of evinacumab in patients with homozygous familial hypercholesterolemia. JACC: Adv. 2023;2(9):100648.

    PubMed  Google Scholar 

  85. Li J-J. Tafolecimab, a novel member of PCSK9 monoclonal antibodies, is worth expecting in a Chinese population. JACC Asia. 2023;3(4):646.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kaplon H, Crescioli S, Chenoweth A, Visweswaraiah J, Reichert JM. Antibodies to watch in 2023. MAbs. 2023;15(1):2153410.

  87. Huo Y, Chen B, Lian Q, et al. Tafolecimab in Chinese patients with non-familial hypercholesterolemia (CREDIT-1): a 48-week randomized, double-blind, placebo-controlled phase 3 trial. The Lancet regional health Western Pacific. 2023;41:100907.

  88. Chai M, He Y, Zhao W, et al. Efficacy and safety of tafolecimab in Chinese patients with heterozygous familial hypercholesterolemia: a randomized, double-blind, placebo-controlled phase 3 trial (CREDIT-2). BMC Med. 2023;21(1):77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Keam SJ. Tafolecimab: first approval. Drugs. 2023;83(16):1545–1549.

  90. Herold KC, Bundy BN, Long SA, et al. An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes. N Engl J Med. 2019;381(7):603–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Baker DE. Teplizumab. Hos Pharm. 2023;58(6):549–556.

  92. Menon AP, Moreno B, Meraviglia-Crivelli D, et al. Modulating T cell responses by targeting CD3. Cancers. 2023;15(4):1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Reichert JM: Antibody-based therapeutics to watch in 2011. MAbs. 2011;3(1):76–99.

  94. Nourelden AZ, Elshanbary AA, El-Sherif L, et al. Safety and efficacy of teplizumab for treatment of type one diabetes mellitus: a systematic review and meta-analysis. Endocr, Metab Immune Disord-Drug Targets (Formerly Curr Drug Targets-Immune, Endocr Metab Disord). 2021;21(10):1895–904.

    Article  CAS  Google Scholar 

  95. Liu Y, Li W, Chen Y, Wang X. Anti-CD3 monoclonal antibodies in treatment of type 1 diabetes: a systematic review and meta-analysis. Endocrine. 2024;83(2):322–329.

  96. Miller SA, St. Onge E. Otelixizumab: a novel agent for the prevention of type 1 diabetes mellitus. Exp Opin Biol Ther. 2011;11(11):1525–32.

    Article  CAS  Google Scholar 

  97. Jiang Q, Zhang L, Wang R, et al. FoxP3+CD4+ regulatory T cells play an important role in acute HIV-1 infection in humanized Rag2-/-gammaC-/- mice in vivo. Blood. 2008;112(7):2858–2868.

  98. Aronson R, Gottlieb PA, Christiansen JS, et al. Low-dose otelixizumab anti-CD3 monoclonal antibody DEFEND-1 study: results of the randomized phase III study in recent-onset human type 1 diabetes. Diabetes Care. 2014;37(10):2746–54.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Singh S, Aggarwal P, Sharma S, Ravichandiran V. Microorganisms in pathogenesis and management of ulcerative colitis (UC). In: role of microorganisms in pathogenesis and management of autoimmune diseases: volume II: kidney, central nervous system, eye, blood, blood vessels & bowel. Springer; 2023;241–253.

  100. Hale G, Rebello P, Al Bakir I, et al. Pharmacokinetics and antibody responses to the CD3 antibody otelixizumab used in the treatment of type 1 diabetes. J Clin Pharmacol. 2010;50(11):1238–48.

    Article  CAS  PubMed  Google Scholar 

  101. Wiczling P, Rosenzweig M, Vaickus L, Jusko WJ. Pharmacokinetics and pharmacodynamics of a chimeric/humanized anti-CD3 monoclonal antibody, otelixizumab (TRX4), in subjects with psoriasis and with type 1 diabetes mellitus. J Clin Pharmacol. 2010;50(5):494–506.

    Article  CAS  PubMed  Google Scholar 

  102. Chatenoud L. CD3-specific antibody-induced active tolerance: from bench to bedside. Nat Rev Immunol. 2003;3(2):123–32.

    Article  CAS  PubMed  Google Scholar 

  103. Naushad N, Perdigoto AL, Rui J, Herold KC. Have we pushed the needle for treatment of Type 1 diabetes? Curr Opin Immunol. 2017;49:44–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Handa M, Aparnasai RG, Panicker N, Singh S, Ruwali M. Recent trends of extracellular vesicles for therapeutic intervention of brain-related diseases. In: nanomedical drug delivery for neurodegenerative diseases. Elsevier; 2022;119–128.

  105. Guglielmi C, Williams SR, Del Toro R, Pozzilli P. Efficacy and safety of otelixizumab use in new-onset type 1 diabetes mellitus. Expert Opin Biol Ther. 2016;16(6):841–6.

    Article  CAS  PubMed  Google Scholar 

  106. Geiler J, McDermott MF. Gevokizumab, an anti-IL-1β mAb for the potential treatment of type 1 and 2 diabetes, rheumatoid arthritis and cardiovascular disease. Curr Opin Mol Ther. 2010;12(6):755–69.

    CAS  PubMed  Google Scholar 

  107. Pafili K, Papanas N, Maltezos E. Gevokizumab in type 1 diabetes mellitus: extreme remedies for extreme diseases? Expert Opin Investig Drugs. 2014;23(9):1277–84.

    Article  CAS  PubMed  Google Scholar 

  108. Owyang AM, Issafras H, Corbin J, et al. XOMA 052, a potent, high-affinity monoclonal antibody for the treatment of IL-1β-mediated diseases. In: 2011: Taylor & Francis. 49–60.

  109. Eguchi K, Manabe I. Macrophages and islet inflammation in type 2 diabetes. Diabetes Obes Metab. 2013;15(s3):152–8.

    Article  CAS  PubMed  Google Scholar 

  110. Cavelti-Weder C, Babians-Brunner A, Keller C, et al. Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care. 2012;35(8):1654–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xu M, Zhu X, Wu J, et al. PCSK9 inhibitor recaticimab for hypercholesterolemia on stable statin dose: a randomized, double-blind, placebo-controlled phase 1b/2 study. BMC Med. 2022;20(1):1–13.

    Article  CAS  Google Scholar 

  112. Careskey HE, Davis RA, Alborn WE, Troutt JS, Cao G, Konrad RJ. Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9. J Lipid Res. 2008;49(2):394–8.

    Article  CAS  PubMed  Google Scholar 

  113. Soccio RE, Chen ER, Lazar MA. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 2014;20(4):573–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation. 2016;133(2):187–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Singh S, Aggarwal P, Ravichandiran V. Immunological response of the respiratory tract in the SARS-CoV-2 infection. Coronaviruses. 2021;2(9):8–17.

    Article  Google Scholar 

  116. Mancia G, Kjeldsen SE, Kreutz R, Pathak A, Grassi G, Esler M. Individualized beta-blocker treatment for high blood pressure dictated by medical comorbidities: indications beyond the 2018 European Society of Cardiology/European Society of Hypertension Guidelines. Hypertension. 2022;79(6):1153–66.

    Article  CAS  PubMed  Google Scholar 

  117. Sinatra ST, Teter BB, Bowden J, Houston MC, Martinez-Gonzalez MA. The saturated fat, cholesterol, and statin controversy a commentary. J Am Coll Nutr. 2014;33(1):79–88.

    Article  PubMed  Google Scholar 

  118. Gonzalez-Casas R, Jones EA, Moreno-Otero R. Spectrum of anemia associated with chronic liver disease. World J Gastroenterol: WJG. 2009;15(37):4653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Brennan FR, Morton LD, Spindeldreher S, et al. Safety and immunotoxicity assessment of immunomodulatory monoclonal antibodies. In: 2010: Taylor & Francis: 233–255.

  120. Gogesch P, Dudek S, van Zandbergen G, Waibler Z, Anzaghe M. The role of Fc receptors on the effectiveness of therapeutic monoclonal antibodies. Int J Mol Sci. 2021;22(16):8947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yan S, Zhao X, **e Q, et al: Pharmacokinetic/LDL-C and exposure-response analysis of tafolecimab in Chinese hypercholesterolemia patients: results from phase I, II, and III studies. Clin Transl Sci. 2023;16(12):2791–2803.

  122. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014;42(D1):D1091–7.

    Article  CAS  PubMed  Google Scholar 

  123. Wang EQ, Plotka A, Salageanu J, Sattler C, Yunis C. Pharmacokinetics and pharmacodynamics of bococizumab, a monoclonal antibody to PCSK 9, after single subcutaneous injection at three sites [NCT 02043301]. Cardiovasc Ther. 2017;35(5):e12278.

    Article  Google Scholar 

  124. Chen R, Tian Z, Tang X, Hu P, Wang L, **a Y, et al. The safety, pharmacokinetics, pharmacodynamics and immunogenicity of ebronucimab in healthy volunteers: result from a phase I, randomized, double-blind, placebo-controlled, single dose-escalation study. Circulation. 2022;146(Suppl_1):A9318-A.

  125. Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJT. The safety and side effects of monoclonal antibodies. Nat Rev Drug Discovery. 2010;9(4):325–38.

    Article  CAS  PubMed  Google Scholar 

  126. Zider A, Drakeman D. The future of monoclonal antibody technology. In: 2010: Taylor & Francis: 361–364.

  127. Teicher BA, Chari RVJ. Antibody conjugate therapeutics: challenges and potential. Clin Cancer Res. 2011;17(20):6389–97.

    Article  CAS  PubMed  Google Scholar 

  128. Steinwand M, Droste P, Frenzel A, Hust M, Dübel S, Schirrmann T. The influence of antibody fragment format on phage display based affinity maturation of IgG. In: 2014: Taylor & Francis: 204–218.

Download references

Acknowledgements

The authors thankful to the Department of Pharmaceuticals, Ministry of Chemical and Fertilizers, Government of India for consistently supporting.

Author information

Authors and Affiliations

Authors

Contributions

P.J. and N.N. wrote the main manuscript text and K.C.M. and S.S. prepared Figs. 1, 2 and 3. All authors reviewed the manuscript.

Corresponding author

Correspondence to Sanjiv Singh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamadade, P., Nupur, N., Maharana, K.C. et al. Therapeutic Monoclonal Antibodies for Metabolic Disorders: Major Advancements and Future Perspectives. Curr Atheroscler Rep (2024). https://doi.org/10.1007/s11883-024-01228-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11883-024-01228-0

Keywords

Navigation