Log in

Effect of Solution and Aging Treatments Parameters on Microstructure and Mechanical Properties of Laser Additive Manufactured Ti-10V-2Fe-3Al Metastable β

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Improvement of the mechanical property of the near-β titanium alloy Ti-10V-2Fe-3Al (TB6) fabricated by laser additive manufacturing can be achieved through solution and aging treatment. In this paper, the changes in the microstructures and mechanical properties of the deposited TB6 specimens were tested by changing the solution temperature, aging temperature, and aging time and the effects of the primary α phase (αp) and secondary α phase (αs) on the mechanical properties were analyzed. The results show that the solution temperatures mainly determine the volume fraction of αp and grain boundary α phase (αGB). Aging temperature and time have large impacts on the morphology of αs. The strength of the solution- and age-treated specimens are controlled by the volume fraction and size of αs. The higher volume fraction, αs, obtained by the higher solution temperature could lead to a higher strength with balanced ductility. The coarser αs obtained by the higher aging temperature or longer aging time will contribute to higher ductility, but decrease the strength of the alloy. The fracture mode of tensile specimens is mainly intergranular fracture due to the strain incompatibility between the grains and the grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.C. Wang, J. Guan, X.W. Ma, and G.Q. Zhao, J. Plast. Eng. 9, 1 https://doi.org/10.3969/j.issn.1007-2012.2002.01.001 (2002).

    Article  Google Scholar 

  2. Y.F. Yang, S.D. Luo, G.B. Schaffer, and M. Qian, Mater. Sci. Eng. A 528, 6719 https://doi.org/10.1016/j.msea.2011.05.041 (2011).

    Article  CAS  Google Scholar 

  3. R.R. Boyer and R.D. Briggs, J. Mater. Eng. Perform. 14, 681 https://doi.org/10.1361/105994905X75448 (2005).

    Article  CAS  Google Scholar 

  4. R.R. Boyer and R.D. Briggs, J. Mater. Eng. Perform. 22, 2916 https://doi.org/10.1007/s11665-013-0728-3 (2013).

    Article  CAS  Google Scholar 

  5. J. Gao and L. Yao, World Nonferrous Metals 02, 4 (2001).

    Google Scholar 

  6. D.G. Ahn, Int. J. Precis. Eng. Manuf. Green Technol. 8, 703 https://doi.org/10.1007/s40684-020-00302-7 (2021).

    Article  Google Scholar 

  7. B.H. Lu and D.C. Li, Mach. Build. Automat. 42, 1 (2013). https://doi.org/10.19344/j.cnki.issn1671-5276.2013.04.001

    Article  CAS  Google Scholar 

  8. H. Wang, J. Aeronaut. 35, 2690 (2014).

    Google Scholar 

  9. M. Ahmed, D.G. Savvakin, O.M. Ivasishin, and E.V. Pereloma, Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 605, 89 https://doi.org/10.1016/j.msea.2014.03.030 (2014).

    Article  CAS  Google Scholar 

  10. C.M. Liu, H.M. Wang, X.J. Tian, H.B. Tang, and D. Liu, Mater. Sci. Eng. A 586, 323 https://doi.org/10.1016/j.msea.2013.08.032 (2013).

    Article  CAS  Google Scholar 

  11. W.-L. Zhang, W.-T. Hao, W. **ong, G.-Z. Quan, J. Zhao, R.-J. Shi, and Q. Liu, High Temp. Mater. Process. 39, 501 https://doi.org/10.1515/htmp-2020-0060 (2020).

    Article  CAS  ADS  Google Scholar 

  12. G.T. Terlinde, T.W. Duerig, and J.C. Williams, Metall. Trans. A 14, 2101 https://doi.org/10.1007/BF02662377 (1983).

    Article  Google Scholar 

  13. T.W. Duerig, G.T. Terlinde, and J.C. Williams, Metall. Trans. A 11, 1987 https://doi.org/10.1007/BF02655118 (1980).

    Article  Google Scholar 

  14. G. Terlinde and G. Fischer, Titanium and Titanium Alloys, (2003), pp 37–57.

  15. W.T. Wang, P. Li, W.J. Kou, Q.Y. Sun, B. Liu, L. **ao, and J. Sun, Rare Metal Mater. Eng. 49, 1707 (2020).

    CAS  Google Scholar 

  16. J.C. Colombo-Pulgarin, C.A. Biffi, M. Vedani, D. Celentano, A. Sanchez-Egea, A.D. Boccardo, and J.P. Ponthot, J. Mater. Eng. Perform. 30, 6365 https://doi.org/10.1007/s11665-021-05800-6 (2021).

    Article  CAS  Google Scholar 

  17. R. Bogucki, K. Mosor, and M. Nykiel, Arch. Metall. Mater. 59, 1269 https://doi.org/10.2478/amm-2014-0217 (2014).

    Article  CAS  Google Scholar 

  18. F. Arias-Gonzalez, J. del Val, R. Comesana, J. Penide, F. Lusquinos, F. Quintero, A. Riveiro, M. Boutinguiza, F.J. Gil, and J. Pou, Met. Mater. Int. 24, 231 https://doi.org/10.1007/s12540-017-7094-x (2018).

    Article  CAS  Google Scholar 

  19. H. Ali, H. Ghadbeigi, and K. Mumtaz, J. Mater. Eng. Perform. 27, 4059 https://doi.org/10.1007/s11665-018-3477-5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. J.A. Wessels, A. du Plessis, I. Yadroitsava, J. Els, and I. Yadroitsev, S. Afr. J. Ind. Eng. 31, 242 https://doi.org/10.7166/31-3-2449 (2020).

    Article  Google Scholar 

  21. E. Ghio and E. Cerri, Materials. https://doi.org/10.3390/ma15062047 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  22. H. Jaber, J. Konya, K. Kulcsar, and T. Kovacs, Materials. https://doi.org/10.3390/ma15051978 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Y.I. Ganor, E. Tiferet, S.C. Vogel, D.W. Brown, M. Chonin, A. Pesach, A. Hajaj, A. Garkun, S. Samuha, R.Z. Shneck, and O. Yeheskel, Materials. https://doi.org/10.3390/ma14030658 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. D.L. Ouyang, H.M. Du, X. Cui, S.Q. Lu, and X.J. Dong, Trans. Mater. Heat Treat. 37, 42 https://doi.org/10.13289/j.issn.1009-6264.2016.12.008 (2016).

    Article  CAS  Google Scholar 

  25. X. Wu, (Huazhong University of Science and Technology, 2019).

  26. W. Chuan, Trans. Nonferrous Metals Soc. China 32, 45 (2015).

    Google Scholar 

  27. G.-Z. Quan, G.-S. Li, Y. Wang, J. Zhou, and P.-C. Li, Trans. Mater. Heat Treat. 34, 175 https://doi.org/10.13289/j.issn.1009-6264.2013.01.030 (2013).

    Article  CAS  Google Scholar 

  28. N. Stanford and P.S. Bate, Acta Mater. 52, 5215 https://doi.org/10.1016/j.actamat.2004.07.034 (2004).

    Article  CAS  ADS  Google Scholar 

  29. M. Ahmed, D. Wexler, G. Casillas, O.M. Ivasishin, and E.V. Pereloma, Acta Mater. 84, 124 https://doi.org/10.1016/j.actamat.2014.10.043 (2015).

    Article  CAS  Google Scholar 

  30. P. Barriobero-Vila, G. Requena, F. Warchomicka, A. Stark, N. Schell, and T. Buslaps, J. Mater. Sci. 50, 1412 https://doi.org/10.1007/s10853-014-8701-6 (2015).

    Article  CAS  ADS  Google Scholar 

  31. C. Li, X. Wu, J.H. Chen, and S. van der Zwaag, Mater. Sci. Eng. A 528, 5854 https://doi.org/10.1016/j.msea.2011.03.107 (2011).

    Article  CAS  Google Scholar 

  32. H. boyun, Chin. Mater. Eng. Canon, (2006).

  33. B. Liu, H. Xu, H. Lijun, and Q. Lichun, Chin. J. Rare Metals 33, 489 https://doi.org/10.3969/j.issn.0258-7076.2009.04.007 (2009).

    Article  CAS  Google Scholar 

  34. N. Kazantseva, P. Krakhmalev, M. Thuvander, I. Yadroitsev, N. Vinogradova, and I. Ezhov, Mater Charact 146, 101 https://doi.org/10.1016/j.matchar.2018.09.042 (2018).

    Article  CAS  Google Scholar 

  35. X.K. Ma, F.G. Li, Z.K. Sun, J.H. Hou, X.T. Fang, Y.T. Zhu, and C.C. Koch, Science 50A, 2126 https://doi.org/10.1007/s11661-019-05157-5 (2019).

    Article  CAS  Google Scholar 

  36. C.B. Biezeno and J.M. Burgers, Proceedings of the first International Congress for Applied Mechanics, (Delft, 1924).

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China [52090044].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuquan Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jiao, Z., Cheng, X. et al. Effect of Solution and Aging Treatments Parameters on Microstructure and Mechanical Properties of Laser Additive Manufactured Ti-10V-2Fe-3Al Metastable β. JOM 76, 1913–1923 (2024). https://doi.org/10.1007/s11837-023-06304-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06304-5

Navigation