Log in

Contact geometry in the restricted three-body problem: a survey

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

This survey is based on lecture notes for an online mini-course taught for postgraduate students at UDELAR, Montevideo, Uruguay, in November 2020, remotely from the Mittag–Leffler Institute in Djursholm, Sweden. Lectures were recorded and are available online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. In this section, we will use the symbol \(\vec {}\;\) for vectors in \({\mathbb {R}}^3\) to make our formulas for Moser regularization simpler. We will use the convention that \(\xi \in {\mathbb {R}}^4\) has the form \((\xi _0,\vec \xi )\).

  2. This was discussed at the opening lectures by Hofer and Floer in Fall 1988 at the symplectic program at the MSRI Berkeley, although unfortunately is written nowhere. Hofer gave a lecture on capacities and the \(S^1\)-equivariant symplectic homology at a conference in Durham in 1989, whose proceedings are published in [33], and contains the non-equivariant part of the story. I thank Hofer for these clarifications.

References

  1. Abbondandolo, A., Schwarz, M.: On the Floer homology of cotangent bundles. Commun. Pure Appl. Math. 59(2), 254–316 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abouzaid, M., Blumberg, A.J.: Arnold conjecture and Morava K-theory. ar**v:2103.01507

  3. Acu, B.: The Weinstein conjecture for iterated planar contact structures. ar**v:1710.07724

  4. Acu, B., Etnyre, J.B., Ozbagci, B.: Generalizations of planar contact manifolds to higher dimensions. ar**v:2006.02940

  5. Albers, P., Fish, J.W., Frauenfelder, U., Hofer, H., van Koert, O.: Global surfaces of section in the planar restricted 3-body problem. Arch. Ration. Mech. Anal. 204(1), 273–284 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Albers, P., Fish, J.W., Frauenfelder, U., van Koert, O.: The Conley–Zehnder indices of the rotating Kepler problem. Math. Proc. Camb. Philos. Soc. 154(2), 243–260 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Albers, P., Frauenfelder, U., van Koert, O., Paternain, G.P.: Contact geometry of the restricted three-body problem. Commun. Pure Appl. Math. 65(2), 229–263 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Albers, P., Geiges, H., Zehmisch, K.: Reeb dynamics inspired by Katok’s example in Finsler geometry. Math. Ann. 370(3–4), 1883–1907 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Albers, P., Hofer, H.: On the Weinstein conjecture in higher dimensions. Comment. Math. Helv. 84(2), 429–436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Arnold, V.: Sur une propriete topologique des applications globalement canoniques de la mecanique classique (French). C. R. Acad. Sci. Paris 261, 3719–3722 (1965)

    MathSciNet  MATH  Google Scholar 

  11. Arnol’d, V.I.: Some remarks on symplectic monodromy of Milnor fibrations. The Floer memorial volume, Progr. Math., vol. 133, pp. 99–103. Birkhäuser, Basel (1995)

  12. Ballmann, W.: Der Satz von Lusternik und Schnirelmann. Bonn. Math. Schr. 102, 1–25 (1978)

    MathSciNet  MATH  Google Scholar 

  13. Bangert, V.: On the existence of closed geodesics on two-spheres. Int. J. Math. 4(1), 1–10 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Barth, K., Geiges, H., Zehmisch, K.: The diffeomorphism type of symplectic fillings. J. Symplectic Geom. 17(4), 929–971 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Benedetti, G., Ritter, A.F.: Invariance of symplectic cohomology and twisted cotangent bundles over surfaces. Int. J. Math. 31(9), 2050070 (2020) (p. 56)

  16. Birkhoff, G.D.: Proof of Poincaré’s last geometric theorem. Trans. AMS 14, 14–22 (1913)

    MATH  Google Scholar 

  17. Bott, R.: On the iteration of closed geodesics and the sturm intersection theory. Commun. Pure Appl. Math. 9(2), 171–206 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bourgeois, F., Oancea, A.: Symplectic homology, autonomous Hamiltonians, and Morse–Bott moduli spaces. Duke Math. J. 146(1), 71–174 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bowden, J.: Exactly fillable contact structures without Stein fillings. Algebraic Geom. Topol. 12(3), 1803–1810 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bowden, J., Crowley, D., Stipsicz, A.I.: The topology of Stein fillable manifolds in high dimensions I. Proc. Lond. Math. Soc. 109(6), 1363–1401 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bowden, J., Gironella, F., Moreno, A.: Bourgeois contact structures: tightness, fillability and applications. ar**v:1908.05749

  22. Burns, K., Matveev, V.S.: Open problems and questions about geodesics. ar**v:1308.5417

  23. Cannas da Silva, A.: Lectures on symplectic geometry. Lecture Notes in Mathematics, vol. 1764, pp. xii+217. Springer, Berlin (2001)

  24. Cardona, R., Miranda, E., Peralta-Salas, D., Presas, F.: Universality of Euler flows and flexibility of Reeb embeddings. ar**v:1911.01963

  25. Chenciner, A.: Poincaré and the three-body problem. Henri Poincaré, 1912–2012, Prog. Math. Phys., vol. 67, pp. 51–149. Birkhäuser/Springer, Basel (2015)

  26. Cho, W., Jung, H., Kim, G.: The contact geometry of the spatial circular restricted 3-body problem (2018). ar**v:1810.05796

  27. Cieliebak, K., Eliashberg, Y.: From Stein to Weinstein and back. Symplectic geometry of affine complex manifolds. American Mathematical Society Colloquium Publications, vol. 59, pp. xii+364. American Mathematical Society, Providence (2012)

  28. Cieliebak, K., Oancea, A.: Symplectic homology and the Eilenberg-Steenrod axioms. Appendix written jointly with Peter Albers. Algebraic Geom. Topol. 18(4), 1953–2130 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Conley, C.C.: On some new long periodic solutions of the plane restricted three body problem. In: Internat. Sympos. Monlinear Differential Equations and Nonlinear Mechanics, pp. 86–90. Academic Press, New York (1963)

  30. Cristofaro-Gardiner, D., Hutchings, M., Pomerleano, D.: Torsion contact forms in three dimensions have two or infinitely many Reeb orbits. Geom. Topol. 23(7), 3601–3645 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Cristofaro-Gardiner, D., Hutchings, M., Ramos, V.G.B.: The asymptotics of ECH capacities. Invent. Math. 199, 187–214 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Croke, C.B.: Poincaré’s problem and the length of the shortest closed geodesic on a convex hypersurface. J. Differ. Geom. 17(4), 595–634 (1983)

    MATH  Google Scholar 

  33. Donaldson, S.K., Thomas, C.B.: Geometry of low-dimensional manifolds. 2. Symplectic manifolds and Jones-Witten theory. In: Proceedings of the symposium held in Durham, July 1989. London Mathematical Society Lecture Note Series, vol. 151, pp. xiv+242. Cambridge University Press, Cambridge (1990)

  34. Donaldson, S.K.: Lefschetz pencils on symplectic manifolds. J. Differ. Geom. 53(2), 205–236 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Eliashberg, Y.: Unique holomorphically fillable contact structure on the 3-torus. Int. Math. Res. Not. 1996(2), 77–82 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Etnyre, J.B.: Lectures on open book decompositions and contact structures. Floer homology, gauge theory, and low-dimensional topology, Clay Math. Proc., vol. 5, pp. 103–141. Amer. Math. Soc., Providence (2006)

  37. Fet, A.I.: Variational problems on closed manifolds. Mat. Sbornik 30 (1952). English translation in Amer. Math. Society, Translation No. 90 (1953)

  38. Floer, A.: Proof of the Arnold conjecture for surfaces and generalizations to certain Kähler manifolds. Duke Math. J. 53(1), 1–32 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  39. Floer, A.: Morse theory for Lagrangian intersections. J. Differ. Geom. 28(3), 513–547 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  40. Floer, A.: The unregularized gradient flow of the symplectic action. Commun. Pure Appl. Math. 41(6), 775–813 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  41. Floer, A.: Cup length estimates on Lagrangian intersections. Commun. Pure Appl. Math. 42(4), 335–356 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  42. Floer, A.: Symplectic fixed points and holomorphic spheres. Commun. Math. Phys. 120(4), 575–611 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  43. Floer, A.: Witten’s complex and infinite-dimensional Morse theory. J. Differ. Geom. 30, 207–221 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  44. Floer, A., Hofer, H.: Symplectic homology. I. Open sets in Cn. Math. Z. 215(1), 37–88 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  45. Floer, A., Hofer, H., Viterbo, C.: The Weinstein conjecture in \(P\times { C}^l\). Math. Z. 203(3), 469–482 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  46. Franks, J.: Geodesics on \(S^2\) and periodic points of annulus homeomorphisms. Invent. Math. 108(2), 403–418 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  47. Frauenfelder, U., van Koert, O.: The restricted three-body problem and holomorphic curves. Pathways in Mathematics, pp. xi+374. Birkhäuser/Springer, Cham (2018)

  48. Fukaya, K., Ono, K.: Arnold conjecture and Gromov-Witten invariant. Topology 38(5), 933–1048 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  49. Geiges, H.: An introduction to contact topology. Cambridge Studies in Advanced Mathematics, vol. 109, pp. xvi+440. Cambridge University Press, Cambridge (2008)

  50. Geiges, H.: A brief history of contact geometry and topology. Expos. Math. 19(1), 25–53 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  51. Geiges, H., Kwon, M., Zehmisch, K.: Diffeomorphism type of symplectic fillings of unit cotangent bundles. ar**v:1909.13586

  52. Ghiggini, P.: Strongly fillable contact 3-manifolds without Stein fillings. Geom. Topol. 9(3), 1677–1687 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  53. Ginzburg, V.L.: The Conley conjecture. Ann. Math. (2) 172, 1127–1180 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. Ginzburg, V.L., Gürel, B.Z.: The Conley conjecture and beyond. Arnold Math. J. 1(3), 299–337 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Ginzburg, V.L., Gürel, B.Z.: Conley conjecture revisited. Int. Math. Res. Not. IMRN (3), pp. 761–798 (2019)

  56. Giroux, E.: Géométrie de contact: de la dimension trois vers les dimensions supérieures. (French) [Contact geometry: from dimension three to higher dimensions]. In: Proceedings of the International Congress of Mathematicians, Vol. II (Bei**g, 2002), pp. 405–414. Higher Ed. Press, Bei**g (2002)

  57. Griffiths, P., Harris, J.: Principles of algebraic geometry. Pure and Applied Mathematics, pp. xii+813. Wiley-Interscience [John Wiley & Sons], New York (1978)

  58. Gromoll, D., Meyer, W.: Periodic geodesics on compact riemannian manifolds. J. Differ. Geom. 3, 493–510 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  59. Gromov, M.: Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82, 307–347 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  60. Gromov, M.: Homotopical effects of dilatation. J. Differ. Geom. 13(3), 303–310 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  61. Hein, D.: The Conley conjecture for the cotangent bundle. Arch. Math. (Basel) 96(1), 85–100 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  62. Hill, G.: On the part of the Motion of the Lunar Perigee which is a Function of the Mean Motions of the Sun and the Moon. John Wilson & Son, Cambridge (1877), Reprinted in Acta 8, 1–36 (1886)

  63. Hill, G.: Researches in the lunar theory. Am. J. Math. 1, 5–26, 129–147, 245–260 (1878)

  64. Hingston, N.: Equivariant Morse theory and closed geodesics. J. Differ. Geom. 19(1), 85–116 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  65. Hingston, N.: On the growth of the number of closed geodesics on the two-sphere. Int. Math. Res. Not. 9, 253–262 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  66. Hingston, N.: On the lengths of closed geodesics on a two-sphere. Proc. Am. Math. Soc. 125(10), 3099–3106 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  67. Hitchin, N.J., Segal, G.B., Ward, R.S.: Integrabke systems, twistors, loop groups, and Riemann surfaces. Oxford Graduate Texts in Mathematics, vol. 4, p. 136. Clarendon Press, Oxford (1999)

  68. Hofer, H.: Symplectic capacities Geometry of low-dimensional manifolds, 2 (Durham, 1989), London Math. Soc. Lecture Note Ser., vol. 151, pp. 15–34. Cambridge Univ. Press, Cambridge (1990)

  69. Hofer, H.: Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three. Invent. Math. 114(3), 515–563 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  70. Hofer, H., Salamon, D.A.: Floer homology and Novikov rings. The Floer memorial volume, Progr. Math., vol. 133, pp. 483–524. Birkhäuser, Basel (1995)

  71. Hofer, H., Viterbo, C.: The Weinstein conjecture in cotangent bundles and related results. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15(3), 411–445 (1989)

  72. Hofer, H., Viterbo, C.: The Weinstein conjecture in the presence of holomorphic spheres. Commun. Pure Appl. Math. 45(5), 583–622 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  73. Hofer, H., Wysocki, K., Zehnder, E.: The dynamics on three-dimensional strictly convex energy surfaces. Ann. Math. (2) 148(1), 197–289 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  74. Hryniewicz, U.: Fast finite-energy planes in symplectizations and applications. Trans. Am. Math. Soc. 364, 1859–1931 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  75. Hryniewicz, U.: Systems of global surfaces of section for dynamically convex Reeb flows on the 3-sphere. J. Symplectic Geom. 12(4), 791–862 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  76. Hryniewicz, P.S.: On the existence of disk-like global sections for Reeb flows on the tight 3-sphere. Duke Math. J. 160(3), 415–465 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  77. Hryniewicz, U., Salomão, Pedro A.S., Wysocki, K.: Genus zero global surfaces of section for Reeb flows and a result of Birkhoff. ar**v:1912.01078

  78. Hryniewicz, U., Salomão, P.A.S.: Global surfaces of section for Reeb flows in dimension three and beyond. In: Proceedings of the International Congress of Mathematicians-Rio de Janeiro 2018. Vol. II. Invited Lectures, pp. 941–967, World Sci. Publ., Hackensack (2018)

  79. Huybrechts, D.: Complex geometry. An introduction. Universitext, pp. xii+309. Springer, Berlin (2005)

  80. Irie, K.: Dense existence of periodic Reeb orbits and ECH spectral invariants. J. Mod. Dyn. 9, 357–363 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  81. Irie, K.: Equidistributed periodic orbits of \(C^\infty \)-generic three-dimensional Reeb flows (2018). ar**v:1812.01869

  82. Katok, A.B.: Ergodic perturbations of degenerate integrable Hamiltonian systems (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 37, 539–576 (1973)

    MathSciNet  Google Scholar 

  83. Katok, A., Hasselblatt, B.: Introduction to the modern theory of dynamical systems. With a supplementary chapter by Katok and Leonardo Mendoza. Encyclopedia of Mathematics and its Applications, vol. 54, pp. xviii+802. Cambridge University Press, Cambridge (1995)

  84. Klingenberg, W.: Lectures on closed geodesics. Grundlehren der Mathematischen Wissenschaften, vol. 230. Springer, Berlin (1978)

  85. Klingenberg, W., Takens, F.: Generic properties of geodesic flows. Math. Ann. 197, 323–334 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  86. Kwon, M., van Koert, O.: Brieskorn manifolds in contact topology. Bull. Lond. Math. Soc. 48(2), 173–241 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  87. Li, T.-J., Mak, C.Y., Yasui, K.: Calabi-Yau caps, uniruled caps and symplectic fillings. Proc. Lond. Math. Soc. (3) 114(1), 159–187 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  88. Li, Y., Ozbagci, B.: Fillings of unit cotangent bundles of nonorientable surfaces. Bull. Lond. Math. Soc. 50(1), 7–16 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  89. Liu, G., Tian, G.: Floer homology and Arnold conjecture. J. Differ. Geom. 49(1), 1–74 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  90. Lyusternik, L.A., Fet, A.I.: Variational problems on closed manifolds. Dokl. Akad. Nauk SSSR 81, 17–18 (1951)

    MathSciNet  Google Scholar 

  91. Lusternik, L., Schnirelmann, L.: Existence de trois géodésiques fermées sur toute surface de genre 0. C. R. Acad Sci. Paris 188, 269–271 (1929)

    MATH  Google Scholar 

  92. Lusternik, L., Schnirelmann, L.: Sur le probléme de trois géodésiques fermées sur toute surface de genre 0. C. R. Acad. Sci. Paris 189, 534–536 (1929)

    MATH  Google Scholar 

  93. Massot, P., Niederkrüger, K., Wendl, C.: Weak and strong fillability of higher dimensional contact manifolds. Invent. Math. 192(2), 287–373 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  94. McDuff, D.: Symplectic manifolds with contact type boundaries. Invent. Math. 103(3), 651–671 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  95. McDuff, D., Salamon, D.: Introduction to symplectic topology. Oxford Graduate Texts in Mathematics, 3rd edn, pp. xi+623. Oxford University Press, Oxford (2017)

  96. McGehee, R.P.: Some homoclinic orbits for the restricted three-body problem. Thesis (Ph.D.). The University of Wisconsin-Madison, p. 63. ProQuest LLC, Ann Arbor (1969)

  97. Milnor, J.: Singular points of complex hypersurfaces. Annals of Mathematics Studies, No. 61, pp. iii+122. Princeton University Press, Princeton, University of Tokyo Press, Tokyo (1968)

  98. Moreno, A., van Koert, O.: Global hypersurfaces of section in the spatial restricted three-body problem. Nonlinearity. Preprint ar**v:2011.10386

  99. Moreno, A., van Koert, O.: A generalized Poincaré-Birkhoff theorem. J. Fixed Point Theory Appl. Preprint ar**v:2011.06562

  100. Moreno, A.: Holomorphic dynamics in the restricted three-body problem. Preprint ar**v:2011.06568

  101. Moser, J.: A fixed point theorem in symplectic geometry. Acta Math. 141(1–2), 17–34 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  102. Moser, J.: Monotone twist map**s and the calculus of variations. Ergodic Theory Dyn. Syst. 6(3), 401–413 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  103. Neumann, W.D.: Generalizations of the Poincaré Birkhoff fixed point theorem. Bull. Austral. Math. Soc. 17(3), 375–389 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  104. Nicholls, R.: Second species orbits of negative action and contact forms in the circular restricted three-body problem. ar**v:2108.05741

  105. Oancea, A.: A survey of Floer homology for manifolds with contact type boundary or symplectic homology. Symplectic geometry and Floer homology. A survey of the Floer homology for manifolds with contact type boundary or symplectic homology, Ensaios Mat., vol. 7, pp. 51–91. Soc. Brasil. Mat., Rio de Janeiro (2004)

  106. Oancea, A.: Morse theory, closed geodesics, and the homology of free loop spaces. With an appendix by Umberto Hryniewicz. IRMA Lect. Math. Theor. Phys., vol. 24, Free loop spaces in geometry and topology, pp. 67–109, Eur. Math. Soc., Zürich (2015)

  107. Oba, T.: Lefschetz-Bott fibrations on line bundles over symplectic manifolds. ar**v:1904.00369

  108. Ono, K.: On the Arnold conjecture for weakly monotone symplectic manifolds. Invent. Math. 119(3), 519–537 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  109. Poincaré, H.: Les Méthodes Nouvelles de la Mécanique Céleste, Tome I, Paris, Gauthier-Viltars (1892). Republished by Blanchard, Paris (1987)

  110. Poincaré, H.: Sur un théorème de géométrie. Rend. Circ. Mat. Palermo 33, 375–407 (1912)

    Article  MATH  Google Scholar 

  111. Poincaré, H.: Sur les lignes geodesiques des surfaces convexes. Trans. Am. Math. Soc. 6, 237–274 (1905)

    MATH  Google Scholar 

  112. Rademacher, H.-B.: On the average indices of closed geodesics. J. Differ. Geom. 29(1), 65–83 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  113. Robbin, J., Salamon, D.: The Maslov index for paths. Topology 32(4), 827–844 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  114. Salamon, D.A., Weber, J.: Floer homology and the heat flow. Geom. Funct. Anal. 16(5), 1050–1138 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  115. Seidel, P.: A long exact sequence for symplectic Floer cohomology. Topology 42(5), 1003–1063 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  116. Siefring, R.: Intersection theory of punctured pseudoholomorphic curves. Geom. Topol. 15(4), 2351–2457 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  117. Sivek, S., Van Horn-Morris, J.: Fillings of unit cotangent bundles. Math. Ann. 368(3–4), 1063–1080 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  118. Sorrentino, A.: Lecture notes on Mather’s theory for Lagrangian systems. http://pmu.uy/pmu16/pmu16-0169.pdf

  119. Taubes, C.H.: The Seiberg-Witten equations and the Weinstein conjecture. Geom. Topol. 11, 2117–2202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  120. Ustilovsky, I.: Contact homology and contact structures on \(S^{4m+1}\). PhD thesis, Stanford University (1999)

  121. Vigué-Poirrier, M., Sullivan, D.: The homology theory of the closed geodesic problem. J. Differ. Geom. 11(4), 633–644 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  122. Viterbo, C.: Functors and computations in Floer homology with applications. I. Geom. Funct. Anal. 9(5), 985–1033 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  123. Viterbo, C.: Functors and Computations in Floer homology with Applications Part II. ar**v:1805.01316

  124. Viterbo, C.: A proof of Weinstein’s conjecture in \({\mathbb{R}}^{2n}\). Ann. Inst. H. Poincaré Anal. Non Linéaire 4(4), 337–356 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  125. Wayne, C.E.: An introduction to KAM theory, lecture notes. http://math.bu.edu/INDIVIDUAL/cew/preprints/introkam.pdf

  126. Wendl, C.: Strongly fillable contact manifolds and \(J\)-holomorphic foliations. Duke Math. J. 151(3), 337–384 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  127. Wendl, C.: Holomorphic curves in low dimensions. From symplectic ruled surfaces to planar contact manifolds. Lecture Notes in Mathematics, vol. 2216, pp. xiii+292. Springer, Cham (2018)

  128. Zhou, Z.: \(({\mathbb{R}} P^{2n-1},{ }_{std})\) is not exactly fillable for \(n\ne 2k\). ar**v:2001.09718

  129. Ziller, W.: The free loop space of globally symmetric spaces. Invent. Math. 41(1), 1–22 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  130. Ziller, W.: Geometry of the Katok examples. Ergodic Theory Dyn. Syst. 3(1), 135–157 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to thank all of those present (virtually and physically) during the lectures: Helmut Hofer (who also provided more accurate historical background), Chris Wendl (who also provided useful background, and corrected my pronunciation on Eastern-European names), Otto van Koert (who also provided amazing pictures and videos, and stayed up until 2am to watch the lectures), Urs Frauenfelder, Ezequiel Maderna, Paolo Ghiggini (Povero Paolo!), Alex Takeda, Jagna Wiśniewska, Fabio Gironella ...to name a few whom I remember seeing on the screen; sorry if I missed you, and thank you. I am also very grateful to my uruguayan colleagues Alejandro Passeggi and Rafael Potrie for hel** me organize this, to Gabriele Benedetti for pointing out a mathematical flaw in the work of the author with Otto van Koert, and to all the students in Uruguay, Sweden, and abroad (e.g., Turkey, France, US, South Korea, ...) who showed interest in the project. This material is based on work supported by the Swedish Research Council under Grant No. 2016-06596, while the author was in residence at Institut Mittag–Leffler in Djursholm, Sweden during the Winter Semester, 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustin Moreno.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Symplectic geometry—A Festschrift in honour of Claude Viterbo’s 60th birthday” edited by Helmut Hofer, Alberto Abbondandolo, Urs Frauenfelder, and Felix Schlenk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno, A. Contact geometry in the restricted three-body problem: a survey. J. Fixed Point Theory Appl. 24, 29 (2022). https://doi.org/10.1007/s11784-022-00956-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11784-022-00956-7

Keywords

Mathematics Subject Classification

Navigation