Log in

Seepage characteristics of a fractured silty mudstone under different confining pressures and temperatures

不同围压和温度下粉砂质粉质泥岩裂隙的渗流特性

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To investigate the influence of confining pressures and temperatures on the seepage characteristics of fractured rocks, seepage tests were conducted on a fractured silty mudstone using a self-developed experimental system, and the effects of different factors on coefficient of permeability were discussed. The results showed that the increasing confining pressure will gradually decrease the coefficient of permeability, and this process is divided into two stages: 1) the fast decrease stage, which corresponds to a confining pressure less than 30 kPa, and 2) the slow decrease stage, which corresponds to a confining pressure larger than 30 kPa. Unlike confining pressure, an increase in temperature will increase the coefficient of permeability. It is noted that fracture surface roughness will also affect the variation of coefficient of permeability to a certain extent. Among the three examined factors, the effect of confining pressure increases is dominant on fracture permeability coefficient. The relationship between the confining pressure and coefficient of permeability can be quantified by an exponential function.

摘要

为研究围压和温度对粉砂质泥岩裂隙渗流特性的影响,采用自行研发的裂隙渗流实验系统对裂 隙粉质泥岩进行渗流试验,探讨了不同因素对渗透系数的影响。结果表明:围压的增大会导致渗透系 数逐渐减小,该过程分为快速减小和缓慢减小两个阶段。其中,快速减小阶段对应的围压小于30 kPa; 缓慢降低阶段对应的稳压则大于30 kPa。温度对裂隙渗透系数的影响与围压不同,温度升高将导致渗 透系数增加。此外,裂隙面粗糙度也在一定程度上影响渗透系数的变化,但这种变化受到围压的影响 较大,当围压大于50 kPa 时,这种影响逐渐消失。可以看出,在以上三种因素中,围压的变化是影响 裂缝渗透系数改变的主要因素,且围压和裂隙渗透系数之间的关系可以通过指数函数来量化

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HUENGES E, KOHL T, KOLDITZ O, BREMER J, SCHECK-WENDEROTH M, VIENKEN T. Geothermal energy systems: research perspective for domestic energy provision [J]. Environmental Earth Sciences, 2013, 70(8): 3927–3933. DOI: https://doi.org/10.1007/s12665-013-2881-2.

    Article  Google Scholar 

  2. ZHANG J H, LI F, ZENG L, PENG J H, LI J. Numerical simulation of the moisture migration of unsaturated clay embankments in southern China considering stress state [J]. Bulletin of Engineering Geology and the Environment, 2020. DOI: https://doi.org/10.1007/s10064-020-01916-6.

  3. GAO Q F, JRAD M, HATTAB M, FLEUREAU J M. Pore morphology, porosity and pore size distribution in kaolinitic remoulded clays under triaxial loading [J]. International Journal of Geomechanics, 2020, 20(6): 1–10. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001682.

    Article  Google Scholar 

  4. JAVADI M, SHARIFZADEH M, SHAHRIAR K, MITANI Y. Critical Reynolds number for nonlinear flow through rough-walled fractures: The role of shear processes [J]. Water Resources Research, 2014, 50(2): 1789–1804. DOI: https://doi.org/10.1002/2013WR014610.

    Article  Google Scholar 

  5. ZHANG J, PENG J, ZENG L, LI J, LI F. Rapid estimation of resilient modulus of subgrade soils using performance-related soil properties [J]. International Journal of Pavement Engineering, 2019, 22(3): 1–8. DOI: https://doi.org/10.1080/10298436.2019.1643022.

    Google Scholar 

  6. ZENG L, XIAO L, ZHANG J, FU H Y. The role of nanotechnology in subgrade and pavement engineering: A review [J]. Journal of Nanoscience and Nanotechnology, 2020, 20(8): 4607–4618. DOI: https://doi.org/10.1166/jnn.2020.18491.

    Article  Google Scholar 

  7. REN D, SUN W, HUANG H, NAN J X, CHEN B. Determination of microscopic waterflooding characteristics and influence factors in ultra-low permeability sandstone reservoir [J]. Journal of Central South University, 2017, 24(9): 2134–2144. DOI: https://doi.org/10.1007/s11771-017-3622-6.

    Article  Google Scholar 

  8. TSANG Y W, TSANG C F. Channel model of flow through fractured media [J]. Water Resources Research, 1987, 23(3): 467–479. DOI: https://doi.org/10.1029/WR023i003p00467.

    Article  Google Scholar 

  9. NICHOLL M J, RAJARAM H, GLASS R J, DETWILER R L. Saturated flow in a single fracture: Evaluation of the Reynolds equation in measured aperture fields [J]. Water Resources Research, 1999, 35(11): 3361–3373. DOI: https://doi.org/10.1029/1999WR900241.

    Article  Google Scholar 

  10. WANG L, CARDENAS M B, SLOTTKE D T, KETCHAM R A, SHARP J M. Modification of the local cubic law of fracture flow for weak, inertia, tortuosity and roughness [J]. Water Resources Research, 2015, 51(4): 2064–2080. DOI: https://doi.org/10.1002/2014WR015815.

    Article  Google Scholar 

  11. GAO Q F, DONG H, HUANG R, LI Z F. Structural characteristics and hydraulic conductivity of an eluvial-colluvial gravelly soil [J]. Bulletin of Engineering Geology and the Environment, 2019, 78(7): 5011–5028. DOI: https://doi.org/10.1007/s10064-018-01455-1.

    Article  Google Scholar 

  12. ZHANG J, PENG J, LIU W, LU W H. Predicting resilient modulus of fine-grained subgrade soils considering relative compaction and matric suction [J]. Road Materials and Pavement Design, 2019, 8: 1–13. DOI: https://doi.org/10.1080/14680629.2019.1651756.

    Google Scholar 

  13. HUANG X, ZHANG R. Catastrophe stability analysis for shallow tunnels considering settlement [J]. Journal of Central South University, 2018, 25(4): 949–960. DOI: https://doi.org/10.1007/s11771-018-3796-6.

    Article  Google Scholar 

  14. TZELEPIS V, MOUTSOPOULOS K N, PAPASPYROS J N E, ABDTSIHRINTZIS V A. Experimental investigation of flow behavior in smooth and rough artificial fractures [J]. Journal of Hydrology, 2015, 521: 108–118. DOI: https://doi.org/10.1016/j.jhydrol.2014.11.054.

    Article  Google Scholar 

  15. RAU G C, ANDERSEN M S, ACWORTH R I. Experimental investigation of the thermal dispersivity term and its significance in the heat transport equation for flow in sediments [J]. Water Resources Research, 2012, 48(3): 3454–3467. DOI: https://doi.org/10.1029/2011WR011038.

    Google Scholar 

  16. SHARMEEN R, ILLMAN W A, BERG S J, YEH T J, PARK Y J, SUDICK E A, ANDO K. Transient hydraulic tomography in a fractured dolostone: Laboratory rock block experiments [J]. Water Resources Research, 2012, 48(10): 1075–1086. DOI: https://doi.org/10.1029/2012WR012216.

    Article  Google Scholar 

  17. QIAN J, ZHAN H, ZHAO W, SUN F G. Experimental study of turbulent unconfined groundwater flow in a single fracture [J]. Journal of Hydrology, 2005, 311(1–4): 134–142. DOI: https://doi.org/10.1016/j.jhydrol.2005.01.013.

    Article  Google Scholar 

  18. LIU R, LI B, JIANG Y. Critical hydraulic gradient for nonlinear flow through rock fracture networks: The roles of aperture, surface roughness, and number of intersections [J]. Advances in Water Resources, 2016, 88: 53–65. DOI: https://doi.org/10.1016/j.advwatres.2015.12.002.

    Article  Google Scholar 

  19. LIN H, DENG J G, LIU W, XU J, LIU H L. Numerical simulation of hydraulic fracture propagation in weakly consolidated sandstone reservoirs [J]. Journal of Central South University, 2018, 25(12): 2944–2952. DOI: https://doi.org/10.1007/s11771-018-3964-8.

    Article  Google Scholar 

  20. VITEL M, ROUABHI A, TIJANI M, GUERIN F. Modeling heat and mass transfer during ground freezing subjected to high seepage velocities [J]. Computers and Geotechnics, 2016, 73: 1–15. DOI: https://doi.org/10.1016/j.compgeo.2015.11.014.

    Article  Google Scholar 

  21. GUO Ai-guo, ZHAI **-yi. Correction of the influence of rubber film restraint in triaxial compression test [J]. Rock and Soil Mechanics, 2002(4): 442–445. DOI: https://doi.org/10.16285/j.rsm.2002.04.012. (in Chinese)

  22. XIONG Feng, SUN Wei, JIANG Qing-hui, YE Zu-yang, XUE Dao-rui, LIU Ru-yan. A low-speed nonlinear seepage model for rough rock fissures and its experimental verification [J]. Rock and Soil Mechanics, 2018, 39(9): 3294–3302, 3312. DOI: https://doi.org/10.16285/j.rsm.2016.2623. (in Chinese)

    Google Scholar 

  23. CHENG W, LIU Z, YANG H, WANG W Y. Non-linear seepage characteristics and influential factors of water injection in gassy seams [J]. Experimental Thermal and Fluid Science, 2018, 91(2): 41–53. DOI: https://doi.org/10.1016/j.expthermflusci.2017.10.002.

    Article  Google Scholar 

  24. XIAO Y, DESAI C S, DAOUADJI A, STUEDLEIN A W, LIU H, ABUELNAGA, H. Grain crushing in geoscience materials-Key issues on crushing measure, testing and modelling: Review and preface[J]. Geoscience Frontiers, 2020, 11(2): 363–374. DOI: https://doi.org/10.1016/j.gsf.2019.11.006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zeng  (曾铃).

Additional information

Foundation item: Projects(51838001, 51878070, 51908073, 51908069) supported by the National Natural Science Foundation of China; Project(2019SK2171) supported by the Key Research and Development Program of Hunan Province, China; Project(kq1905043) supported by the Training Program for Excellent Young Innovators of Changsha, China; Project(2019IC04) supported by Double First-class Scientific Research International Cooperation Expansion Project of Changsha University of Science & Technology, China; Project(CX20200811) supported by Postgraduate Research and Innovation Key Project of Hunan Province, China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Hy., Jiang, Hb., Qiu, X. et al. Seepage characteristics of a fractured silty mudstone under different confining pressures and temperatures. J. Cent. South Univ. 27, 1907–1916 (2020). https://doi.org/10.1007/s11771-020-4419-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4419-6

Key words

关键词

Navigation