Log in

Physiological and molecular responses of two Arabidopsis accessions to calcium amendment and salt constraint

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The Arabidopsis thaliana NOK2 accession displays salt tolerance compared to more commonly known A. thaliana accessions, such as Col-0, but the basis of this phenotypic feature is unknown. This work was focused on determining whether salt tolerance in NOK2 plants is affected by calcium supplementation to the growth medium. A. thaliana seedlings were grown in pots containing a mixture of sand and peat under controlled conditions in a low-level Ca(NO3)2 medium supplemented with 0 or 50 mM NaCl with and without amendment with two higher levels of Ca(NO3)2. Calcium amendment was beneficial for salt-treated NOK2 plants, as shown by the increase in dry weight of NOK2 plants with and without NaCl, but had no impact on Col-0 biomass. Sodium accumulation decreased as a function of calcium amendment in NOK2, while Col-0 maintained its high Na levels under these conditions. Leaf K+ content, K+ uptake, and Ca content decreased in NOK2 and Col-0 plants growing in the low-level Ca medium when NaCl was added, but rose in leaves of both accessions with calcium amendment, although K remained low in both accessions in the absence of NaCl. K+/Na+ selectivity increased preferentially in NOK2 with increasing calcium in the presence of NaCl, but when Na was restricted and not under any conditions in Col-0. Preferential effects of calcium were not observed on the transcript accumulation of seven Na+, K+ or Ca2+ transport genes for either of the accessions, except for increased transcription of the CAX4 gene in NOK2 leaves at the highest calcium concentration used (5 mM). Leaf membrane leakage, which increased two-fold higher in Col-0 under salt application compared with the increase in NOK2, declined for both accessions in response to calcium supplementation, and in NOK2 this decline reached no salt levels when Ca2+ amendments were highest. Chlorophyll and carotenoid content dropped two-fold in Col-0 in response to salt, but were unchanged in NOK2 under these conditions. In contrast, leaf anthocyanins, which were normally tenfold higher in Col-0 than in NOK2 in the low-level Ca2+ medium, declined in Col-0 plants as a function of Ca2+ supplementation, but were maintained at low levels in NOK2 leaves regardless of salinity and calcium. In conclusion, NOK2 plants responded positively to calcium supplementation by improving biomass yield during salinity treatment, whereas this amendment only affected Col-0 by reducing its permeability and anthocyanin titre. K+/Na+ selectivity appeared to be an important characteristic of NOK2 response to calcium. The regulation of this response may involve the CAX4 Ca2+/H+ vacuolar transport gene, but does not appear to involve six other common ion transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DW:

Dry weight

References

  • Ahmad S, Wahid A, Rasul E, Wahid A (2005) Comparative morphological and physiological responses of green gram genotypes to salinity applied at different growth stages. Bot Bull Acad Sin 6:35–42

    Google Scholar 

  • Al Harbi AR (1995) Growth and nutrient composition of tomato and cucumber seedlings as affected by sodium chloride salinity and supplemental calcium. J Plant Nutr 18:1403–1416

    Article  CAS  Google Scholar 

  • Albrecht V, Weinl S, Blazevic D, D’Angelo C, Batistic O, Kolukisaoglu U, Bock R, Schulz B, Harter K, Kudla J (2003) The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J 36:457–470

    Article  PubMed  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Balakumar T, Hani V, Vincent B, Paliwal K (1993) On the interaction of UV-B radiation (280–315 nm) with water stress in crop plants. Physiol Plant 87:217–222

    Article  CAS  Google Scholar 

  • Batistic O, Kudla J (2008) Plant calcineurin B-like proteins and their interacting protein kinases. Biochim Biophys Acta 1793:985–992

    Article  PubMed  Google Scholar 

  • Berezin I, Mizrachy-Dagry T, Brook E, Mizrahi K, Elazar M, Zhuo S, Saul-Tcherkas V, Shaul O (2008) Overexpression of AtMHX in tobacco causes increased sensitivity to Mg2+, Zn2+, and Cd2+ ions, induction of V-ATPase expression, and a reduction in plant size. Plant Cell Rep 27:939–949

    Article  PubMed  CAS  Google Scholar 

  • Berthomieu P, Conejero G, Nublat A et al (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB, Gruissem W, Jones R (2000) Biochemistry and molecular biology of plants Maryland. Am Soc Plant Physiol

  • Cachorro P, Ortiz A, Cerda A (1994) Implications of calcium nutrition on the response of Phaseolus vulgaris L. to salinity. Plant Soil 159:205–212

    Article  CAS  Google Scholar 

  • Carden DE, Walker DJ, Flowers TJ, Miller AJ (2003) Single cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiol 131:676–683

    Article  PubMed  CAS  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    Article  CAS  Google Scholar 

  • Chan CWM, Schorrak LM, Smith RK, Bent AF, Sussman MR (2003) A cyclic nucleotide-gated ion channel, CNGC2, is crucial for plant development and adaptation to calcium stress. Plant Physiol 132:728–731

    Article  PubMed  CAS  Google Scholar 

  • Cheng NH, Pittman JK, Shigaki T, Hirschi KD (2002a) Characterization of CAX4, an Arabidopsis H+/Cation Antiporter. Plant Physiol 128:1245–1254

    Article  PubMed  CAS  Google Scholar 

  • Cheng NH, Pittman JK, Shigaki T, Hirschi KD (2002b) Characterization of CAX4, an Arabidopsis H+/Ca2+ antiporter. Plant Physiol 128:1245–1254

    Article  PubMed  CAS  Google Scholar 

  • Close DC, McArthor C (2002) Rethinking the role of many plant phenolics—protection against photodamage not herbivores? OIKOS 99:166–172

    Article  CAS  Google Scholar 

  • Cramer GR, Lynch J, Lauchli A, Epstein E (1987) Influx of Na+ K+ and Ca2+ into roots of salt stressed cotton seedlings: effects of supplemental Ca2+. Plant Physiol 83:510–516

    Article  PubMed  CAS  Google Scholar 

  • D’Angelo C, Weinl S, Batistic O, Pandey G, Cheong Y, Schu¨ltke S, Albrecht V, Ehlert B, Schulz B, Harter K et al (2006) Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J 48:857–872

    Article  PubMed  Google Scholar 

  • Davenport RJ, Munoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ 30:497–507

    Article  PubMed  CAS  Google Scholar 

  • Davenport RJ, Tester M (2000) A weakly voltage-dependent, non-selective cation channel mediates toxic sodium influx in wheat. Plant Physiol 122:823–834

    Article  PubMed  CAS  Google Scholar 

  • Boer De (1999) Potassium translocation into the root xylem. Plant Biol 1:36–45

    Article  Google Scholar 

  • De Pascale S, Maggio A, Fogliano V, Ambrosino P, Ritieni A (2001) Irrigation with saline water improves carotenoids content and antioxidant activity of tomato. J Hort Sci Biotechnol 76:447–453

    Google Scholar 

  • Deeken R, Sanders C, Ache P, Hedrich R (2000) Developmental and light dependent regulation of a phloem localised K+ channel of Arabidopsis thaliana. Plant J 23:285–290

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Davenport RJ, Tester M (2002) Nonselective cation channels in plants. Annu Rev Plant Biol 53:67–107

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Tester M (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplast from Arabidopsis roots. Plant Physiol 128:379–387

    Article  PubMed  CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Foot JP, Caporn SJM, Lee JA, Ashenden TW (1996) The effect of long-term ozone fumigation on the growth, physiology and frost sensitivity of Calluna vulgaris. New Phytol 133:503–511

    Article  CAS  Google Scholar 

  • Gay AP, Hauck B (1994) Acclimation of Lolium temulentum to enhanced carbon dioxide concentration. J Exp Bot 45:1133–1141

    Article  Google Scholar 

  • Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux Ferriere N, Thibaud JB, Sentenac H (1998) Identification and disruption of a plant shakerlike outward channel involved in K+ release into the xylem sap. Cell 94:647–655

    Article  PubMed  CAS  Google Scholar 

  • Geisler M, Frangne N, Gomes E, Martinoia E, Palmgren MG (2000) The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. Plant Physiol 124:1814–1827

    Article  PubMed  CAS  Google Scholar 

  • Ghars MA, Parre E, Debez A, Bordenave M, Richard L, Leport L, Bouchereau A, Savouré A, Abdelly C (2008) Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation. J Plant Physiol 165:588–599

    Article  Google Scholar 

  • Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJ (2006) Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot 57:791–800

    Article  PubMed  CAS  Google Scholar 

  • Golldack D, Quigley F, Michalowski CB, Kamasani UR, Bohnert HJ (2003) Salinity stress tolerant and sensitive rice (Oryza sativa L.) regulate AKT1 type potassium channel transcripts differently. Plant Mol Biol 51:71–81

    Article  PubMed  CAS  Google Scholar 

  • Gould KS, Markham KR, Smith RH, Goris JJ (2000) Functional role of anthocyanins in the leaves of Quintinia serrata A Cunn. J Exp Bot 51:1107–1115

    Article  PubMed  CAS  Google Scholar 

  • Guo KM, Babourina O, Christopher DA, Borsics T, Rengel Z (2008) The cyclic nucleotide-gated channel, AtCNGC 10, influences salt tolerance in Arabidopsis. Physiol Plant 134:499–507

    Article  PubMed  CAS  Google Scholar 

  • Harper JF, Harmon A (2005) Plants, symbiosis and parasites: a calcium signalling connection. Nat Rev Mol Cell Biol 6:555–566

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bonhert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hirschi KD (1999) Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell 11:2113–2122

    Article  PubMed  CAS  Google Scholar 

  • Hirschi KD (2004) The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol 136:2438–2442

    Article  PubMed  CAS  Google Scholar 

  • Kaddour R, Nasri N, M’rah S, Berthomieu P, Lachaâl M (2009) Comparative effect of potassium on K and Na uptake and transport in two accessions of Arabidopsis thaliana during salinity stress. C R Biol 332:784–794

    Article  PubMed  CAS  Google Scholar 

  • Kaplan B, Sherman T, Fromm H (2007) Cyclic nucleotide-gated channels in plants. FEBS Lett 581:2237–2246

    Article  PubMed  CAS  Google Scholar 

  • Kaya C, Ak BE, Higgs D, MurilloAmador B (2002) Influence of foliar applied calcium nitrate on strawberry plants grown under salt stress conditions. Aust J Exp Agric 42:631–636

    Article  CAS  Google Scholar 

  • Korenkov V, Hirschi K, Crutchfield JD, Wagner GJ (2007) Enhancing tonoplast Cd/H antiporter activity increases Cd, Zn and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L. Planta 226(6):1379–1387

    Article  PubMed  CAS  Google Scholar 

  • Krol M, Gray GR, Hurry VM, O’quist G, Malek L, Huner NPA (1995) Low-temperature stress and photoperiod affect an increased tolerance to photoinhibition in Pinus banksiana seedlings. Can J Bot 73:1119–1127

    Article  CAS  Google Scholar 

  • Kudla J, Xu Q, Harter K, Gruissem W, Luan S (1999) Genes for calcineurin B like proteins in Arabidopsis are differentially regulated by stress signals. PNAS 96:4718–4723

    Article  PubMed  CAS  Google Scholar 

  • Labidi N, Lachaâl M, Chibani F, Grignon C, Hajji M (2002) Variability of the response to NaCl of eight ecotypes of Arabidopsis thaliana. J Plant Nutr 25:2627–2638

    Article  CAS  Google Scholar 

  • Lecourieux D, Ranjeva R, Pugin A (2006) Calcium in plant defence signalling pathways. New Phytol 171:249–269

    Article  PubMed  CAS  Google Scholar 

  • Li XL, Borsics T, Harrington HM, Christopher DA (2005) Arabidopsis AtCNGC10 rescues potassium channel mutants of E. coli, yeast and Arabidopsis and is regulated by calcium/calmodulin and cyclic GMP in E. coli. Funct Plant Biol 32:643–653

    Article  Google Scholar 

  • Lichtenthaler HK (1988) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth Enz 148:350–383

    Article  Google Scholar 

  • Luan S (2009) The CBL–CIPK network in plant calcium signaling. Trends Plant Sci 14:37–42

    Article  PubMed  CAS  Google Scholar 

  • Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14(Suppl):S389–S400

    PubMed  CAS  Google Scholar 

  • Luan S, Lan W, Lee SC (2009) Potassium nutrition, sodium toxicity, and calcium signaling: connections through the CBL–CIPK network. Curr Opin Plant Biol 12:339–346

    Article  PubMed  CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398

    Article  CAS  Google Scholar 

  • Maathuis FJ, Sanders D (2001a) Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127:1617–1625

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJ, Sanders D (2001b) Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127:1617–1625

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Marten I, Hoth S, Deeken R, Ache P, Ketchum KA, Hoshi T, Hedrich R (1999) AKT3 a phloemlocalized K+ channel is blocked by protons. Proc Natl Acad Sci USA 96:7581–7586

    Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D et al (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition. Kluwer, Dordrecht

    Book  Google Scholar 

  • Moller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell 21:2163–2178

    Article  PubMed  Google Scholar 

  • Murray JR, Hackett WP (1991) Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L. Plant Physiol 97:343–351

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Tanaka K, Ohta E, Sakata M (1990) Protective effect of external Ca2+ on elongation and the intracellular concentration of K+ in intact mung bean roots under high NaCl stress. Plant Cell Physiol 31:815–821

    CAS  Google Scholar 

  • Nedjimi B, Daoud Y (2009) Ameliorative effect of CaCl2 on growth, membrane permeability and nutrient uptake in Atriplex halimus subsp. schweinfurthii grown at high (NaCl) salinity. Desal 249:163–166

    Article  CAS  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    PubMed  CAS  Google Scholar 

  • Patel NT, Vaghela PM, Patel AD, Pandey AN (2011) Implications of calcium nutrition on the response of Caesalpinia crista (Fabaceae) to soil salinity. Acta Ecol Sin 31:24–30

    Article  Google Scholar 

  • Perez Prat E, Narashimhan ML, Binzel ML, Botella MA, Chen Z, Valpuesta V, Bressan RA, Hasegawa PM (1992) Induction of a putative Ca2+-ATPase mRNA in NaCl adapted cells. Plant Physiol 100:1471–1478

    Article  PubMed  CAS  Google Scholar 

  • Qi Z, Spalding EP (2004) Protection of plasma membrane K+ transport by the salt overly sensitive Na+/H+ antiporter during salinity stress. Plant Physiol 136:2548–2555

    Article  PubMed  CAS  Google Scholar 

  • Rajendran L, Ravishankar GA, Venkataraman LV, Prathiba KR (1992) Anthocyanin production in callus cultures of Daucus carota as influence by nutrient stress and osmoticum. Biotech Lett 14:707–712

    Article  CAS  Google Scholar 

  • Roberts SK, Snowman BN (2000) The effects of ABA on channel-mediated K+ transport across higher plant roots. J Exp Bot 51:1585–1594

    Article  PubMed  CAS  Google Scholar 

  • Schmidt C, He T, Cramer GR (1993) Supplemental calcium does not improve growth of salt stressed Brassicas. Plant Soil 155(156):415–418

    Article  Google Scholar 

  • Shalata A, Neumann PM (2001) Exogenous ascorbic acid (Vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 52(364):2207–2211

    PubMed  CAS  Google Scholar 

  • Shi HZ, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long distance Na+ transport in plants. Plant Cell 4:465–477

    Article  Google Scholar 

  • Shi J, Kim K-N, Ritz O, Albrecht V, Gupta R, Harter K, Luan S, Kudla J (1999) Novel protein kinase associated with calcineurin B like calcium sensors in Arabidopsis. Plant Cell 11:2393–2405

    Article  PubMed  CAS  Google Scholar 

  • Snedden WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151:35–66

    Article  CAS  Google Scholar 

  • Steyn WJ, Wand SJE, Holcroft DM, Jacobs G (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol 155:349–361

    Article  CAS  Google Scholar 

  • Tuna AL, Kaya C, Ashraf M et al (2007) The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Env Exp Bot 59:173–178

    Article  CAS  Google Scholar 

  • White PJ (1997) Cation channels in the plasma membrane of rye roots. J Exp Bot 48:499–514

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Bowen HC, Demidchik V, Nichols C, Davies JM (2002) Genes for calcium-permeable channels in the plasma membrane of plant root cells. Biochem Biophys Acta 1564:299–309

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Davenport RJ (2002) The voltage-independent cation channel in the plasma membrane of wheat roots is permeable to divalent cations and may be involved in cytosolic Ca2+ homeostasis. Plant Physiol 130:1386–1395

    Article  PubMed  CAS  Google Scholar 

  • Winkel Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  PubMed  CAS  Google Scholar 

  • Wyatt SE, Tsou P-L, Robertson D (2002) Expression of the high-capacity calcium-binding domain of calreticulin increases bioavailable calcium stores in plants. Transgenic Res 11:1–10

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Tunisian-French CMCU (network 02F/924).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rym Kaddour.

Additional information

Communicated by M. Hajduch.

R. Kaddour and H. Mahmoudi have equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1. Representative semi-quantitative RT-PCR analysis of transcript accumulation for three ion transporters in NOK2 and Col-0 plants in response to NaCl treatment and calcium supplementation. Calcium (0.5, 2.5 and 5 mM) and NaCl (0 or 50 mM) were applied to 23 day-old plants for 16 days. Amplification conditions were as described in “Materials and methods”. EF-1α was used as the reference gene.

Supplementary material 1 (DOC 422 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaddour, R., Mahmoudi, H., Baâtour, O. et al. Physiological and molecular responses of two Arabidopsis accessions to calcium amendment and salt constraint. Acta Physiol Plant 34, 439–450 (2012). https://doi.org/10.1007/s11738-011-0840-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-011-0840-7

Keywords

Navigation