Log in

Metal-organic framework-based sensors for nitrite detection: a short review

  • Review Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Nitrite contamination in food and the environment has attracted incredible public attention owing to its detrimental effects on living systems. It is crucial to develop rapid, easy-to-use, accurate, and cheap analytical techniques to monitor nitrite levels. Metal-organic frameworks are a type of inorganic-organic hybrid crystal material known for their ultrahigh surface area, ordered porous structure, ease of function, as well as their catalytic activity or luminescence in certain situations. This allowed researchers to design a diverse array of sensors for the measurement of nitrite. This article highlights recent progress on the application of metal-organic frameworks towards the sensing of nitrite based on their unique electrical and optical features. According to the design strategies, electrochemical sensors based on metal-organic frameworks can be classified as pristine metal-organic frameworks, metal-organic framework composites, or metal-organic framework derivatives, while optical sensors can be divided into two classes, luminescent metal-organic frameworks, and metal-organic frameworks with luminescent guests. Each category was herein discussed and examples were provided. At the end of the review, current challenges and future trends are also addressed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

NPs:

Nanoparticles

MOFs:

Metal-organic frameworks

LMOFs:

Luminescent MOFs

2D:

Two-dimensional

TCPP:

4,4,4,4-(Porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid)

MWCNTs:

Multi-walled carbon nanotubes

RSD:

Relative standard deviation

GO:

Graphene oxide

ERGO:

Electrochemically reduced graphene oxide

TDPAT:

2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine

Cyt c:

Cytochrome c

CP:

Carbon polyhedron

Ln-MOFs:

Lanthanide MOFs

Rh110:

Rhodamine 110

LR:

Linear range

LOD:

Limit of detection

References

  1. Z. Liu, V.S. Manikandan, A. Chen, Curr Opin Electroche (2019). https://doi.org/10.1016/j.coelec.2019.05.013

    Article  Google Scholar 

  2. W. Bedale, J.J. Sindelar, A.L. Milkowski, Meat Sci (2016). https://doi.org/10.1016/j.meatsci.2016.03.009

    Article  PubMed  Google Scholar 

  3. Q.H. Wang, L.J. Yu, Y. Liu, L. Lin, R.G. Lu, J.P. Zhu et al., Talanta (2017). https://doi.org/10.1016/j.talanta.2016.12.044

    Article  PubMed  PubMed Central  Google Scholar 

  4. M. Flores, F. Toldra, Meat Sci (2021). https://doi.org/10.1016/j.meatsci.2020.108272

    Article  PubMed  Google Scholar 

  5. T. Ramakrishnappa, K. Sureshkumar, M. Pandurangappa, Mater Chem Phys. (2020) https://doi.org/10.1016/j.matchemphys.2020.122744

    Article  Google Scholar 

  6. X. Li, J. **, Y. Ying, TrAC Trends Anal. Chem. (2019) https://doi.org/10.1016/j.trac.2019.01.008

    Article  PubMed  Google Scholar 

  7. J. Sun, X. Zhang, M. Broderick, H. Fein, Sensors (2003). https://doi.org/10.3390/s30800276

    Article  Google Scholar 

  8. T. Baciu, I. Botello, F. Borrull, M. Calull, C. Aguilar, TrAC Trends Anal. Chem. (2015) https://doi.org/10.1016/j.trac.2015.05.011

    Article  Google Scholar 

  9. J.-M. Liu, Y. Hu, Y.-K. Yang, H. Liu, G.-Z. Fang, X. Lu et al., Trends Food Sci Tech. (2018) https://doi.org/10.1016/j.tifs.2017.11.005

    Article  Google Scholar 

  10. Y. Orooji, M. Haddad Irani-Nezhad, R. Hassandoost, A. Khataee, S. Rahim Pouran, S.W. Joo, Spectrochim Acta A. (2020) https://doi.org/10.1016/j.saa.2020.118272

    Article  Google Scholar 

  11. A. Khataee, H. Sohrabi, O. Arbabzadeh, P. Khaaki, M.R. Majidi, Food Chem. Toxicol. (2021) https://doi.org/10.1016/j.fct.2021.112030

    Article  PubMed  Google Scholar 

  12. G. Li, Y. **a, Y. Tian, Y. Wu, J. Liu, Q. He et al., J Electrochem Soc. (2019) https://doi.org/10.1149/2.0171912jes

    Article  Google Scholar 

  13. W. Li, S. Huang, H. Wen, Y. Luo, J. Cheng, Z. Jia et al., Anal Bioanal Chem. (2020) https://doi.org/10.1007/s00216-019-02325-9

    Article  PubMed  PubMed Central  Google Scholar 

  14. R. Jalili, A. Khataee, M.R. Rashidi, A. Razmjou, Food Chem (2020). https://doi.org/10.1016/j.foodchem.2020.126172

    Article  PubMed  Google Scholar 

  15. Z. Yang, X. Zhou, Y. Yin, W. Fang, Anal Lett (2021). https://doi.org/10.1080/00032719.2021.1897134

    Article  Google Scholar 

  16. O. Salhi, T. Ez-zine, M. El Rhazi, Electroanal (2021). https://doi.org/10.1002/elan.202100033

    Article  Google Scholar 

  17. R. Darabi, M. Shabani-Nooshabadi, H. Karimi-Maleh, A. Gholami, Food Chem (2022). https://doi.org/10.1016/j.foodchem.2021.130811

    Article  PubMed  Google Scholar 

  18. A. Magri, M. Petriccione, T.J. Gutiérrez, Food Chem (2021). https://doi.org/10.1016/j.foodchem.2021.129533

    Article  PubMed  Google Scholar 

  19. M.-S. Yao, W.-H. Li, G. Xu, Coordin Chem Rev. (2021) https://doi.org/10.1016/j.ccr.2020.213479

    Article  Google Scholar 

  20. S. Dou, X. Li, X. Wang, ACS Mater Lett. (2020). https://doi.org/10.1021/acsmaterialslett.0c00229

    Article  PubMed  PubMed Central  Google Scholar 

  21. H.D. Lawson, S.P. Walton, C. Chan, ACS Appl Mater Interfaces (2021). https://doi.org/10.1021/acsami.1c01089

    Article  PubMed  Google Scholar 

  22. Y. Li, M. Cui, Z. Yin, S. Chen, T. Ma, Chem Sci. (2020) https://doi.org/10.1039/d0sc04684a

    Article  PubMed  PubMed Central  Google Scholar 

  23. X. Zhao, X. Yu, X. Wang, S. Lai, Y. Sun, D. Yang, Chem. Eng. J. (2021) https://doi.org/10.1016/j.cej.2020.127221

    Article  PubMed  PubMed Central  Google Scholar 

  24. Y. Xu, H. Wang, X. Li, X. Zeng, Z. Du, J. Cao et al., Compr Rev Food Sci Food Saf. (2021) https://doi.org/10.1111/1541-4337.12675

    Article  PubMed  Google Scholar 

  25. W. Cheng, X. Tang, Y. Zhang, D. Wu, W. Yang, Trends Food Sci Tech. (2021) https://doi.org/10.1016/j.tifs.2021.04.004

    Article  Google Scholar 

  26. T. Du, L. Huang, J. Wang, J. Sun, W. Zhang, J. Wang, Trends Food Sci Tech. (2021) https://doi.org/10.1016/j.tifs.2021.03.013

    Article  Google Scholar 

  27. Z. Khorablou, F. Shahdost-Fard, H. Razmi, M.L. Yola, H. Karimi-Maleh, Chemosphere (2021). https://doi.org/10.1016/j.chemosphere.2021.130393

    Article  PubMed  Google Scholar 

  28. J.W. Brown, Q.T. Nguyen, T. Otto, N.N. Jarenwattananon, S. Glöggler, L.-S. Bouchard, Catal. Commun. (2015) https://doi.org/10.1016/j.catcom.2014.09.040

    Article  Google Scholar 

  29. L. Zhang, X. Ma, H. Liang, H. Lin, G. Zhao, J Mater Chem B. (2019) https://doi.org/10.1039/c9tb01832h

    Article  PubMed  PubMed Central  Google Scholar 

  30. H. Karimi-Maleh, M.L. Yola, N. Atar, Y. Orooji, F. Karimi, P. Senthil Kumar et al., J. Colloid Interface Sci. (2021) https://doi.org/10.1016/j.jcis.2021.02.066

    Article  PubMed  Google Scholar 

  31. X. Yan, L. Chen, H. Song, Z. Gao, H. Wei, W. Ren et al., New J Chem. (2021) https://doi.org/10.1039/d1nj03227e

    Article  Google Scholar 

  32. Y. Feng, Y. Wang, Y. Ying, Coordin Chem Rev. (2021) https://doi.org/10.1016/j.ccr.2021.214102

    Article  Google Scholar 

  33. B.B. Guo, J.C. Yin, N. Li, Z.X. Fu, X. Han, J. Xu et al., Adv Opt Mater. (2021) https://doi.org/10.1002/adom.202100283

    Article  Google Scholar 

  34. H. Karimi-Maleh, F. Karimi, L. Fu, A.L. Sanati, M. Alizadeh, C. Karaman et al., J. Hazard. Mater. (2021) https://doi.org/10.1016/j.jhazmat.2021.127058

    Article  PubMed  Google Scholar 

  35. C. Karaman, O. Karaman, B.B. Yola, İ Ülker, N. Atar, M.L. Yola, New J Chem. (2021) https://doi.org/10.1039/d1nj02293h

    Article  Google Scholar 

  36. H. Medetalibeyoğlu, M. Beytur, S. Manap, C. Karaman, F. Kardaş, O. Akyıldırım et al., ECS J Solid State Sc. (2020) https://doi.org/10.1149/2162-8777/abbe6a

    Article  Google Scholar 

  37. H. Sohrabi, O. Arbabzadeh, P. Khaaki, A. Khataee, M.R. Majidi, Y. Orooji, Crit Rev Food Sci. (2021) https://doi.org/10.1080/10408398.2021.1887077

    Article  Google Scholar 

  38. S. Tajik, Y. Orooji, F. Karimi, Z. Ghazanfari, H. Beitollahi, M. Shokouhimehr et al., J Food Meas Charact. (2021) https://doi.org/10.1007/s11694-021-01027-0

    Article  Google Scholar 

  39. A.A. Ensafi, H. Karimi-Maleh, S. Mallakpour, Electroanal (2011). https://doi.org/10.1002/elan.201000741

    Article  Google Scholar 

  40. H. Karimi-Maleh, M. Keyvanfard, K. Alizad, M. Fouladgar, F. Gholami-Orimi, Int J Electrochem Sc 6, 6141 (2011)

    CAS  Google Scholar 

  41. T. Zabihpour, S.-A. Shahidi, H. Karimi-Maleh, A. Ghorbani-HasanSaraei, J Food Meas Charact. (2020) https://doi.org/10.1007/s11694-019-00353-8

    Article  Google Scholar 

  42. S.S. Rajasree, X. Li, P. Deria, Commun Chem (2021). https://doi.org/10.1038/s42004-021-00484-4

    Article  Google Scholar 

  43. X. Zhang, M.C. Wasson, M. Shayan, E.K. Berdichevsky, J. Ricardo-Noordberg, Z. Singh et al., Coordin Chem Rev. (2021) https://doi.org/10.1016/j.ccr.2020.213615

    Article  Google Scholar 

  44. C.-W. Kung, T.-H. Chang, L.-Y. Chou, J.T. Hupp, O.K. Farha, K.-C. Ho, Electrochem. Commun. (2015) https://doi.org/10.1016/j.elecom.2015.06.003

    Article  Google Scholar 

  45. Y. Xue, G. Zhao, R. Yang, F. Chu, J. Chen, L. Wang et al., Nanoscale (2021). https://doi.org/10.1039/d0nr09064f

    Article  PubMed  Google Scholar 

  46. Y. Zhao, L. Jiang, L. Shangguan, L. Mi, A. Liu, S. Liu, J Mater Chem A. (2018) https://doi.org/10.1039/c7ta07911g

    Article  Google Scholar 

  47. B. Yuan, J. Zhang, R. Zhang, H. Shi, X. Guo, Y. Guo et al., Int. J. Electrochem. Sci. 10, 4899 (2015)

    CAS  Google Scholar 

  48. J.W. Yoon, J.H. Kim, C. Kim, H.W. Jang, J.H. Lee, Adv Energy Mater. (2021) https://doi.org/10.1002/aenm.202003052

    Article  Google Scholar 

  49. L. Wang, X. Li, R. Yang, J.-J. Li, L.-B. Qu, Food Anal Method. (2020) https://doi.org/10.1007/s12161-020-01823-2

    Article  Google Scholar 

  50. J. Guo, Y. Wan, Y. Zhu, M. Zhao, Z. Tang, Nano Res. (2020) https://doi.org/10.1007/s12274-020-3182-1

    Article  PubMed  PubMed Central  Google Scholar 

  51. H.Y. Chen, T. Yang, F.Q. Liu, W.H. Li, Chem Sensor Actuat (2019). https://doi.org/10.1016/j.snb.2018.10.036

    Article  Google Scholar 

  52. A. Cernat, M. Tertis, R. Sandulescu, F. Bedioui, A. Cristea, C. Cristea, Anal. Chim. Acta. (2015) https://doi.org/10.1016/j.aca.2015.05.044

    Article  PubMed  Google Scholar 

  53. B.P. Suma, M. Pandurangappa, Electroanal (2020). https://doi.org/10.1002/elan.202060091

    Article  Google Scholar 

  54. P. Arul, N.S.K. Gowthaman, S.A. John, H.N. Lim, ACS Omega (2020). https://doi.org/10.1021/acsomega.9b03829

    Article  PubMed  PubMed Central  Google Scholar 

  55. F.-Y. Yi, R. Zhang, H. Wang, L.-F. Chen, L. Han, H.-L. Jiang et al., Small Methods. (2017) https://doi.org/10.1002/smtd.201700187

    Article  Google Scholar 

  56. B.S. He, D.D. Yan, Food Control (2019). https://doi.org/10.1016/j.foodcont.2019.04.001

    Article  Google Scholar 

  57. A. Gahlaut, V. Hooda, A. Gothwal, V. Hooda, Crit Rev Anal Chem. (2019) https://doi.org/10.1080/10408347.2018.1461551

    Article  PubMed  Google Scholar 

  58. M. Tong, S. Dong, K. Wang, G. Suo, J Electrochem Soc. (2017) https://doi.org/10.1149/2.0911706jes

    Article  Google Scholar 

  59. J.M. Gonçalves, P.R. Martins, D.P. Rocha, T.A. Matias, M.S.S. Julião, R.A.A. Munoz et al., J Mater Chem C. (2021) https://doi.org/10.1039/d1tc02025k

    Article  Google Scholar 

  60. S. Fu, C. Zhu, J. Song, D. Du, Y. Lin, Adv Energy Mater. (2017) https://doi.org/10.1002/aenm.201700363

    Article  Google Scholar 

  61. X. Zhou, Y. Zhou, Z. Hong, X. Zheng, R. Lv, Electroanal (2018). https://doi.org/10.1016/j.jelechem.2018.07.038

    Article  Google Scholar 

  62. R.R. Salunkhe, Y.V. Kaneti, Y. Yamauchi, ACS Nano. (2017). https://doi.org/10.1021/acsnano.7b02796

    Article  PubMed  Google Scholar 

  63. K. Wang, C. Wu, F. Wang, C. Liu, C. Yu, G. Jiang, Electrochim Acta (2018). https://doi.org/10.1016/j.electacta.2018.07.228

    Article  PubMed  PubMed Central  Google Scholar 

  64. W. Zhang, C. Ge, L. **, S. Yoon, W. Kim, G. Xu et al., Electroanal Chem. (2021) https://doi.org/10.1016/j.jelechem.2021.115163

    Article  Google Scholar 

  65. H. Du, Z. Li, Y. Wang, Q. Yang, W. Wu, Food Rev Int. (2020) https://doi.org/10.1080/87559129.2020.1740733

    Article  Google Scholar 

  66. L. Shi, N. Li, D. Wang, M. Fan, S. Zhang, Z. Gong, TrAC Trend Anal Chem. (2021) https://doi.org/10.1016/j.trac.2020.116131

    Article  Google Scholar 

  67. X. Yang, M. Zhang, J. Xu, S. Wen, Y. Zhang, J. Zhang, A. Spectrochim Acta (2021). https://doi.org/10.1016/j.saa.2021.119553

    Article  Google Scholar 

  68. J.-X. Wu, B. Yan, Ind. Eng. Chem. Res. (2018) https://doi.org/10.1021/acs.iecr.8b00762

    Article  Google Scholar 

  69. C.J. Huang, Y.X. Ye, L.W. Zhao, Y.S. Li, J.L. Gu, J Inorg Organomet Polym (2019). https://doi.org/10.1007/s10904-019-01111-5

    Article  Google Scholar 

  70. C.-H. Su, C.-W. Kung, T.-H. Chang, H.-C. Lu, K.-C. Ho, Y.-C. Liao, J Mater Chem A. (2016) https://doi.org/10.1039/c6ta03547g

    Article  Google Scholar 

  71. D. Cheng, X. Li, Y. Qiu, Q. Chen, J. Zhou, Y. Yang et al., Anal Methods. (2017) https://doi.org/10.1039/c6ay03164a

    Article  PubMed  PubMed Central  Google Scholar 

  72. S. Lu, H. Jia, M. Hummel, Y. Wu, K. Wang, X. Qi et al., RSC Adv. (2021) https://doi.org/10.1039/d0ra10522h

    Article  Google Scholar 

  73. L.-M. Shi, J.-X. Pan, B. Zhou, X. Jiang, J Mater Chem B. (2015) https://doi.org/10.1039/c5tb01361e

    Article  PubMed  Google Scholar 

  74. S. Dong, D. Zhang, G. Suo, W. Wei, T. Huang, Anal. Chim. Acta. (2016) https://doi.org/10.1016/j.aca.2016.05.040

    Article  PubMed  Google Scholar 

  75. C.-W. Kung, Y.-S. Li, M.-H. Lee, S.-Y. Wang, W.-H. Chiang, K.-C. Ho, J Mater Chem A. (2016) https://doi.org/10.1039/c6ta02563c

    Article  Google Scholar 

  76. M. Saraf, R. Rajak, S.M. Mobin, J Mater Chem A (2016). https://doi.org/10.1039/c6ta06470a

    Article  Google Scholar 

  77. D.K. Yadav, V. Ganesan, P.K. Sonkar, R. Gupta, P.K. Rastogi, Electrochim Acta (2016). https://doi.org/10.1016/j.electacta.2016.03.092

    Article  Google Scholar 

  78. J. Yang, L. Yang, H. Ye, F. Zhao, B. Zeng, Electrochim Acta. (2016) https://doi.org/10.1016/j.electacta.2016.10.071

  79. B. Yuan, J. Zhang, R. Zhang, H. Shi, N. Wang, J. Li et al., Sensors Actuat B-Chem. (2016) https://doi.org/10.1016/j.snb.2015.08.100

    Article  Google Scholar 

  80. S. Dong, M. Tong, D. Zhang, T. Huang, B.-Chem Sensors Actuat. (2017) https://doi.org/10.1016/j.snb.2017.05.047

  81. A.T. Ezhil Vilian, B. Dinesh, R. Muruganantham, S.R. Choe, S.-M. Kang, Y.S. Huh et al., Microchim. Acta. (2017) https://doi.org/10.1007/s00604-017-2513-8

    Article  Google Scholar 

  82. Y.C. Chen, W.H. Chiang, D. Kurniawan, P.C. Yeh, K.I. Otake, C.W. Kung, ACS Appl Mater Interfaces. (2019) https://doi.org/10.1021/acsami.9b11447

    Article  PubMed  PubMed Central  Google Scholar 

  83. J. Liu, J. Int, Electrochem Sci. (2019) https://doi.org/10.20964/2019.02.16

  84. B.P. Suma, M. Pandurangappa, J. Solid State Electr (2019). https://doi.org/10.1007/s10008-019-04454-8

    Article  Google Scholar 

  85. S. Salagare, P. Shivappa Adarakatti, Y. Venkataramanappa, J. Int Environ An Ch. (2020) https://doi.org/10.1080/03067319.2020.1796989

    Article  Google Scholar 

  86. Y.-C. Wang, Y.-C. Chen, W.-S. Chuang, J.-H. Li, Y.-S. Wang, C.-H. Chuang et al., ACS Appl Nano Mater. (2020) https://doi.org/10.1021/acsanm.0c02052

    Article  PubMed  PubMed Central  Google Scholar 

  87. P. Arul, S.-T. Huang, V. Mani, Y.-C. Hu, Electrochim. Acta. (2021) https://doi.org/10.1016/j.electacta.2021.138280

    Article  Google Scholar 

  88. T.-E. Chang, C.-H. Chuang, C.-W. Kung, Electrochem. Commun. (2021) https://doi.org/10.1016/j.elecom.2020.106899

    Article  Google Scholar 

  89. J. Chen, S. Li, F. Xu, Q. Zhang, Electroanal (2021). https://doi.org/10.1002/elan.202100209

    Article  Google Scholar 

  90. S. Huang, M. Lu, L. Wang, RSC Adv. (2021). https://doi.org/10.1039/d0ra09551f

    Article  Google Scholar 

  91. H. Lei, H. Zhu, S. Sun, Z. Zhu, J. Hao, S. Lu et al., Electrochim. Acta. (2021) https://doi.org/10.1016/j.electacta.2020.137375

    Article  Google Scholar 

  92. H.Y. Liu, J.J. Wen, H.X. Xu, Y.B. Qiu, Z.Z. Yin, L.H. Li et al., J AOAC Int. (2021) https://doi.org/10.1093/jaoacint/qsaa089

    Article  PubMed  Google Scholar 

  93. W. Qiu, H. Tanaka, F. Gao, Q. Wang, M. Huang, Adv Powder Technol. (2019) https://doi.org/10.1016/j.apt.2019.06.022

    Article  Google Scholar 

  94. Z. Zhao, J. Zhang, W. Wang, Y. Sun, P. Li, J. Hu et al., Appl Surf Sci. (2019) https://doi.org/10.1016/j.apsusc.2019.04.202

    Article  Google Scholar 

  95. S. Dong, Z. Li, Y. Fu, G. Zhang, D. Zhang, M. Tong et al., Electroanal Chem. (2020) https://doi.org/10.1016/j.jelechem.2019.113785

    Article  Google Scholar 

  96. P. Lei, Y. Zhou, R. Zhu, S. Wu, C. Jiang, C. Dong et al., Microchim. Acta. (2020) https://doi.org/10.1007/s00604-020-04545-8

    Article  Google Scholar 

  97. X. Meng, X. **ao, H. Pang, Front Chem (2020). https://doi.org/10.3389/fchem.2020.00330

    Article  PubMed  PubMed Central  Google Scholar 

  98. P.Y. Du, W. Gu, X. Liu, Dalton Trans (2016). https://doi.org/10.1039/c6dt01360k

    Article  PubMed  Google Scholar 

  99. Z. Qi, Q. You, Y. Chen, Anal. Chim. Acta. (2016) https://doi.org/10.1016/j.aca.2015.10.031

    Article  PubMed  Google Scholar 

  100. J. Sahoo, S.B. Waghmode, P.S. Subramanian, M. Albrecht, Chemistry Select (2016). https://doi.org/10.1002/slct.201600533

    Article  Google Scholar 

  101. B. Ding, Y. Cheng, J. Wu, X.M. Wu, H.M. Zhang, Y. Luo et al., Dyes Pigments. (2017) https://doi.org/10.1016/j.dyepig.2017.07.044

    Article  Google Scholar 

  102. X. Hao, Y. Liang, H. Zhen, X. Sun, X. Liu, M. Li et al., J Solid State Chem. (2020) https://doi.org/10.1016/j.jssc.2020.121323

    Article  Google Scholar 

  103. H. Min, Z. Han, M. Wang, Y. Li, T. Zhou, W. Shi et al., Inorg Chem Front. (2020) https://doi.org/10.1039/d0qi00780c

    Article  Google Scholar 

  104. P. Tapangpan, K. Panyarat, C. Chankaew, K. Grudpan, A. Rujiwatra, Inorg. Chem. Commun. (2020) https://doi.org/10.1016/j.inoche.2019.107627

    Article  Google Scholar 

  105. S. Zhu, L. Zhao, B. Yan, J. Microchem (2020). https://doi.org/10.1016/j.microc.2020.104768

    Article  Google Scholar 

  106. Y. Li, Y. Zhao, W. Zhang, K. Shao, H. Zhou, Z. Anorg. Allg. Chem. (2021) https://doi.org/10.1002/zaac.202100040

    Article  Google Scholar 

Download references

Funding

The authors acknowledge financial support from the Innovative and Entrepreneurial Talent of Jiangsu Province; the Science and Technology Innovation Cultivation Fund of Yangzhou University under Grant 2019CXJ189; and the “Lvyang **feng” talents attracting plan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiming Fang or Huaiguo Xue.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zhong, Y., Zhou, X. et al. Metal-organic framework-based sensors for nitrite detection: a short review. Food Measure 16, 1572–1582 (2022). https://doi.org/10.1007/s11694-021-01270-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01270-5

Keywords

Navigation