Log in

One-Pot Trap** Luminescent Rhodamine 110 into the Cage of MOF-801 for Nitrite Detection in Aqueous Solution

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Given to the severely toxic effect on aquatic organisms and serious carcinogen to human being of nitrite, the development of a convenient and sensitive method for its detection is of greatly significance. Herein, a novel Rh110@MOF-801 fluorescent probe was synthesized in a one-pot strategy and was successfully used in the determination of nitrite. This strategy, taking full advantages of fluorescent rhodamine 110 (Rh110) molecules and porous MOFs, could not only overcome the shortcomings of hydrophobicity of dye molecules and preserve its fluorescent properties perfectly, but also facilitate the interaction between nitrite and fluorescent recognition sites thanks to the open structure and good stability of porous MOFs. The results showed that the fluorescence quenching level of Rh110@MOF-801 fluorescent probe was linear with the applied nitrite concentration in the range of 2–7 µM with a limit of detection of 0.2 µM. Furthermore, the well-designed fluorescence probe could specifically recognize nitrite and would hardly be affected by other possibly coexistent interfering substances. It has been successfully used in quantitative detection of nitrite content in water samples mixed with interfering ions, prefiguring its great application potentials for nitrite monitoring.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6

Similar content being viewed by others

References

  1. M. Shahid, C. Dumat, S. Khalid, E. Schreck, T. **ong, N.K. Niazi, J. Hazard. Mater. 325, 36 (2017). https://doi.org/10.1016/j.jhazmat.2016.11.063

    Article  CAS  PubMed  Google Scholar 

  2. J. Nam, I.-B. Jung, B. Kim, S.-M. Lee, S.-E. Kim, K.-N. Lee, D.-S. Shin, Sens. Actuators B 270, 112 (2018). https://doi.org/10.1016/j.snb.2018.04.171

    Article  CAS  Google Scholar 

  3. M. Saraf, R. Rajak, S.M. Mobin, J. Mater. Chem. A 4, 16432 (2016). https://doi.org/10.1039/C6TA06470A

    Article  CAS  Google Scholar 

  4. B. Yuan, J. Zhang, R. Zhang, H. Shi, N. Wang, J. Li, F. Ma, D. Zhang, Sens. Actuators B 222, 632 (2016). https://doi.org/10.1016/j.snb.2015.08.100

    Article  CAS  Google Scholar 

  5. C. Merusi, C. Corradini, A. Cavazza, C. Borromei, P. Salvadeo, Food Chem. 120, 615 (2010). https://doi.org/10.1016/j.foodchem.2009.10.035

    Article  CAS  Google Scholar 

  6. P. Li, Y. Ding, A. Wang, L. Zhou, S. Wei, Y. Zhou, Y. Tang, Y. Chen, C. Cai, T. Lu, ACS Appl. Mater. Interfaces. 5, 2255 (2013). https://doi.org/10.1021/am400152k

    Article  CAS  PubMed  Google Scholar 

  7. B. Yang, D. Bin, H. Wang, M. Zhu, P. Yang, Y. Du, Colloids Surf. A 481, 43 (2015). https://doi.org/10.1016/j.colsurfa.2015.04.027

    Article  CAS  Google Scholar 

  8. X.-R. Li, F.-Y. Kong, J. Liu, T.-M. Liang, J.-J. Xu, H.-Y. Chen, Adv. Funct. Mater. 22, 1981 (2012). https://doi.org/10.1002/adfm.201103025

    Article  CAS  Google Scholar 

  9. G. Silveira, A. Morais, P.C.M. Villis, C.M. Maroneze, Y. Gushikem, A.M.S. Lucho, F.L. Pissetti, J. Colloid Interface Sci. 369, 302 (2012). https://doi.org/10.1016/j.jcis.2011.11.060

    Article  CAS  PubMed  Google Scholar 

  10. S.-X. Zhang, R. Peng, R. Jiang, X.-S. Chaia, D.G. Barnes, J. Chromatogr. A 104, 1538 (2018). https://doi.org/10.1016/j.chroma.2018.01.026

    Article  CAS  Google Scholar 

  11. Z. Lin, W. Xue, H. Chen, J.-M. Lin, Anal. Chem. 83, 8245 (2011). https://doi.org/10.1021/ac202039h

    Article  CAS  PubMed  Google Scholar 

  12. H. Dong, W. Gao, F. Yan, H. Ji, H. Ju, Anal. Chem. 82, 5511 (2010). https://doi.org/10.1021/ac100852z

    Article  CAS  PubMed  Google Scholar 

  13. R. Freeman, X. Liu, I. Willner, Nano Lett. 11, 4456 (2011). https://doi.org/10.1021/nl202761g

    Article  CAS  PubMed  Google Scholar 

  14. L. Wang, B. Li, L. Zhang, L. Zhang, H. Zhao, Sens. Actuators B 171, 946 (2012). https://doi.org/10.1016/j.snb.2012.06.008

    Article  CAS  Google Scholar 

  15. D. Viboonratanasri, S. Pabchanda, P. Prompinit, Appl. Surf. Sci. 440, 1261 (2018). https://doi.org/10.1016/j.apsusc.2018.01.156

    Article  CAS  Google Scholar 

  16. H.C. Zhou, J.R. Long, O.M. Yaghi, Chem. Rev. 112, 673 (2012). https://doi.org/10.1021/cr300014x

    Article  CAS  PubMed  Google Scholar 

  17. M. Janghouri, H. Hossein, J. Inorg, Organomet. Polym. Mater. 27, 1800 (2017). https://doi.org/10.1007/s10904-017-0644-3

    Article  CAS  Google Scholar 

  18. A.R. Abbasi, S. Hatami, J. Inorg. Organomet. Polym. Mater. 27, 1941 (2017). https://doi.org/10.1007/s10904-017-0618-5

    Article  CAS  Google Scholar 

  19. H.-C.J. Zhou, S. Kitagawa, Chem. Soc. Rev. 43, 5415 (2014). https://doi.org/10.1039/c4cs90059f

    Article  CAS  PubMed  Google Scholar 

  20. N. Sahiner, S. Demirci, M. Yildiz, J. Inorg, Organomet. Polym. Mater. 27, 1333 (2017). https://doi.org/10.1007/s10904-017-0587-8

    Article  CAS  Google Scholar 

  21. K. Sumida, D.L. Rogow, J.A. Mason., T.M. McDonald, E.D. Bloch, Z.R. Herm, T.-H. Bae, J.R. Long, Chem. Rev. 112, 724 (2012). https://doi.org/10.1021/cr2003272

    Article  CAS  PubMed  Google Scholar 

  22. E. Jangodaz, E. Alaie, A.A. Safekordi, S. Tasharrofi, J. Inorg. Organomet. Polym. Mater. 28, 2090 (2018). https://doi.org/10.1007/s10904-018-0896-6

    Article  CAS  Google Scholar 

  23. J.-R. Li, J. Sculley, H.-C. Zhou, Chem. Rev. 112, 869 (2012). https://doi.org/10.1021/cr200190s

    Article  CAS  PubMed  Google Scholar 

  24. P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Férey, R.E. Morris, C. Serre, Chem. Rev. 112, 1232 (2012). https://doi.org/10.1021/cr200256v

    Article  CAS  PubMed  Google Scholar 

  25. A.H. Valekar, K.-H. Cho, S.K. Chitale, D.-Y. Hong, G.-Y. Cha, U.-H. Lee, D.W. Hwang, C. Serre, J.-S. Chang, Y.K. Hwang, Green Chem. 18, 4542 (2016). https://doi.org/10.1039/c6gc00524a

    Article  CAS  Google Scholar 

  26. M.P. Suh, H.J. Park, T.K. Prasad, D.-W. Lim, Chem. Rev. 112, 782 (2012). https://doi.org/10.1021/cr200274s

    Article  CAS  PubMed  Google Scholar 

  27. H.-Y. Zhang, Z.-R. Zhang, C. Yang, L.-X. Ling, B.-J. Wang, H.-L. Fan, J. Inorg. Organomet. Polym. Mater. 28, 694 (2018). https://doi.org/10.1007/s10904-017-0740-4

    Article  CAS  Google Scholar 

  28. N. Stock, S. Biswas, Chem. Rev. 112, 933 (2012). https://doi.org/10.1021/cr200304e

    Article  CAS  PubMed  Google Scholar 

  29. J. Rocha, L.D. Carlos, F.A.A. Paz, D. Ananias, Chem. Soc. Rev. 40, 926 (2011). https://doi.org/10.1039/c0cs00130a

    Article  CAS  PubMed  Google Scholar 

  30. X. Zhao, Z. Gao, Z. Li, H. Huang, J. Porous Mater. 25, 1597 (2018). https://doi.org/10.1007/s10934-018-0573-8

    Article  CAS  Google Scholar 

  31. M.R. Faradonbeh, A.A. Dadkhah, A. Rashidi, S. Tasharofi, F. Mansourkhani, J. Inorg. Organomet. Polym. Mater. 28, 829 (2018). https://doi.org/10.1007/s10904-017-0737-z

    Article  CAS  Google Scholar 

  32. Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 112, 1126 (2012). https://doi.org/10.1021/cr200101d

    Article  CAS  PubMed  Google Scholar 

  33. J.-X. Wu, B. Yan, Ind. Eng. Chem. Res. 57, 7105 (2018). https://doi.org/10.1021/acs.iecr.8b00762

    Article  CAS  Google Scholar 

  34. P.-Y. Du, W. Gu, X. Liu, Dalton Trans. 45, 8700 (2016). https://doi.org/10.1039/c6dt01360k

    Article  CAS  PubMed  Google Scholar 

  35. J. Choi, L.-C. Lin, J.C. Grossman, J. Phys. Chem. C 122, 5545 (2018). https://doi.org/10.1021/acs.jpcc.8b00014

    Article  CAS  Google Scholar 

  36. K. Na, K.M. Choi, O.M. Yaghi, G.A. Somorjai, Nano Lett. 14, 5979 (2014). https://doi.org/10.1021/nl503007h

    Article  CAS  PubMed  Google Scholar 

  37. Q. Li, Q. Liu, J. Zhao, Y. Hua, J. Sun, J. Duan, W. **, J. Membr. Sci. 544, 68 (2017). https://doi.org/10.1016/j.memsci.2017.09.021

    Article  CAS  Google Scholar 

  38. H. Furukawa, F. Gándara, Y.-B. Zhang, J. Jiang, W.L. Queen, M.R. Hudson, O.M. Yaghi, J. Am. Chem. Soc. 136, 4369 (2014). https://doi.org/10.1021/ja500330a

    Article  CAS  PubMed  Google Scholar 

  39. Z. Hu, B.J. Deibert, J. Li, Chem. Soc. Rev. 43, 5815 (2014). https://doi.org/10.1039/C4CS00010B

    Article  CAS  PubMed  Google Scholar 

  40. B. Chen, S. **ang, G. Qian, Acc. Chem. Res. 43, 1115 (2010). https://doi.org/10.1021/ar100023y

    Article  CAS  PubMed  Google Scholar 

  41. D. Feng, W.-C. Chung, Z. Wei, Z.-Y. Gu, H.-L. Jiang, Y.-P. Chen, D.J. Darensbourg, H.-C. Zhou, J. Am. Chem. Soc. 135, 17105 (2013). https://doi.org/10.1021/ja408084j

    Article  CAS  PubMed  Google Scholar 

  42. B. Chen, Y. Yang, F. Zapata, G. Lin, G. Qian, E.B. Lobkovsky, Adv. Mater. 19, 1693 (2007). https://doi.org/10.1002/adma.200601838

    Article  CAS  Google Scholar 

  43. J. Zhao, Y.-N. Wang, W.-W. Dong, Y.-P. Wu, D.-S. Li, Q.-C. Zhang, Inorg. Chem. 55, 3265 (2016). https://doi.org/10.1021/acs.inorgchem.5b02294

    Article  CAS  PubMed  Google Scholar 

  44. F. Luo, S.R. Batten, Dalton Trans. 39, 4485 (2010). https://doi.org/10.1039/C002822N

    Article  CAS  PubMed  Google Scholar 

  45. G. Wißmann, A. Schaate, S. Lilienthal, I. Bremer, A.M. Schneider, P. Behrens, Microporous Mesoporous Mater. 152, 64 (2012). https://doi.org/10.1016/j.micromeso.2011.12.010

    Article  CAS  Google Scholar 

  46. X. Zhang, H. Wang, N.-N. Fu, H.-S. Zhang, Spectrochim. Acta. A 59, 1667 (2003). https://doi.org/10.1016/S1386-1425(02)00404-3

    Article  CAS  Google Scholar 

  47. M. Beij, C.A.M. Afonso, J.M.G. Martinho, Chem. Soc. Rev. 38, 2410 (2009). https://doi.org/10.1039/B901612K

    Article  Google Scholar 

  48. J. Yang, Z. Wang, K. Hu, Y. Li, J. Feng, J. Shi, J. Gu, ACS Appl. Mater. Interfaces 7, 11956 (2015). https://doi.org/10.1021/acsami.5b01946

    Article  CAS  PubMed  Google Scholar 

  49. Q.-H. Liu, X.-L. Yan, J.-C. Guo, D.-H. Wang, L. Li, F.-Y. Yan, L.-G. Chen, Spectrochim. Acta. A 73, 789 (2009). https://doi.org/10.1016/j.saa.2009.03.018

    Article  CAS  Google Scholar 

  50. Q.-H. Wang, L.-J. Yu, Y. Liu, L. Lin, R. Lu, J. Zhu, L. He, Z.-L. Lu, Talanta 165, 709 (2017). https://doi.org/10.1016/j.talanta.2016.12.044

    Article  CAS  PubMed  Google Scholar 

  51. K.M. Miranda, M.G. Espey, D.A. Wink, Nitric Oxide 5, 62 (2001). https://doi.org/10.1006/niox.2000.0319

    Article  CAS  PubMed  Google Scholar 

  52. K. Zhang, Y. Hu, G. Li, Talanta 116 712 (2013). https://doi.org/10.1016/j.talanta.2013.07.019

    Article  CAS  PubMed  Google Scholar 

  53. N.S. Bryan, M.B. Grisham, Free Radic. Biol. Med. 43, 645 (2007). https://doi.org/10.1016/j.freeradbiomed.2007.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. E.H. Seymour, N.S. Lawrence, M. Pandurangappa, R.G. Compton, Microchim. Acta 140, 211 (2002). https://doi.org/10.1007/s00604-002-0915-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (Grant Nos. 51072053, 51372084), the 111 Project (B14018) and the National Science Foundation of Shanghai (Grant No. 18ZR1408700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **lou Gu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Digital pictures of MOF-801 and Rh110@MOF-801 powder, SEM image, DLS picture, N2 sorption isotherm, XRD patterns, UV-Vis spectrum picture, Rh110@MOF-801 photostability picture and image depicting the detection limit of Rh110@MOF-801 sensor, the difference UV-Vis spectrum of Rh110@MOF-801 + nitrite.

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3038 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Ye, Y., Zhao, L. et al. One-Pot Trap** Luminescent Rhodamine 110 into the Cage of MOF-801 for Nitrite Detection in Aqueous Solution. J Inorg Organomet Polym 29, 1476–1484 (2019). https://doi.org/10.1007/s10904-019-01111-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01111-5

Keywords

Navigation